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SUMMARY 
From July 16-to November 8, 2019, the Aida digital libraries research team at the University of Nebraska-Lincoln 

collaborated with the Library of Congress on “Digital Libraries, Intelligent Data Analytics, and Augmented 

Description: A Demonstration Project.“ This demonstration project sought to (1) develop and investigate the viability 

and feasibility of textual and image-based data analytics approaches to support and facilitate discovery; (2) 

understand technical tools and requirements for the Library of Congress to improve access and discovery of its digital 

collections; and (3) enable the Library of Congress to plan for future possibilities. In pursuit of these goals, we focused 

our work around two areas: extracting and foregrounding visual content from Chronicling America 

(chroniclingamerica.loc.gov) and applying a series of image processing and machine learning methods to minimally 

processed manuscript collections featured in By the People (crowd.loc.gov). We undertook a series of explorations 

and investigated a range of issues and challenges related to machine learning and the Library’s collections.  

This final report details the explorations, addresses social and technical challenges with regard to the explorations 

and that are critical context for the development of machine learning in the cultural heritage sector, and makes 

several recommendations to the Library of Congress as it plans for future possibilities. We propose two top-level 

recommendations. First, the Library should focus the weight of its machine learning efforts and energies on social 

and technical infrastructures for the development of machine learning in cultural heritage organizations, research 

libraries, and digital libraries. Second, we recommend that the Library invest in continued, ongoing, intentional 

explorations and investigations of particular machine learning applications to its collections. Both of these top-level 

recommendations map to the three goals of the Library’s 2019 digital strategy.  

Within each top-level recommendation, we offer three more concrete, short- and medium-term recommendations. 

They include, under social and technical infrastructures: (1) Develop a statement of values or principles that will 

guide how the Library of Congress pursues the use, application, and development of machine learning for cultural 

heritage. (2) Create and scope a machine learning roadmap for the Library that looks both internally to the Library 

of Congress and its needs and goals and externally to the larger cultural heritage and other research communities. 

(3) Focus efforts on developing ground truth sets and benchmarking data and making these easily available. Nested 

under the recommendation to support ongoing explorations and investigations, we recommend that the Library: (4) 

Join the Library of Congress’s emergent efforts in machine learning with its existing expertise and leadership in 

crowdsourcing. Combine these areas as “informed crowdsourcing” as appropriate. (5) Sponsor challenges for teams 

to create additional metadata for digital collections in the Library of Congress. As part of these challenges, require 

teams to engage across a range of social and technical questions and problem areas. (6) Continue to create and 

support opportunities for researchers to partner in substantive ways with the Library of Congress on machine 

learning explorations. Each of these recommendations speak to the investigation and challenge areas identified by 

Thomas Padilla in Responsible Operations: Data Science, Machine Learning, and AI in Libraries. 

This demonstration project—via its explorations, discussion, and recommendations—shows the potential of 

machine learning toward a variety of goals and use cases, and it argues that the technology itself will not be the 

hardest part of this work. The hardest part will be the myriad challenges to undertaking this work in ways that are 

socially and culturally responsible, while also upholding responsibility to make the Library of Congress’s materials 

available in timely and accessible ways. Fortunately, the Library of Congress is in a remarkable position to advance 

machine learning for cultural heritage organizations, through its size, the diversity of its collections, and its 

commitment to digital strategy.   
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1 INTRODUCTION 
In response to notice ID 030ADV19Q0274, “The Library of Congress – Pre-processing Pilot,” the Aida digital libraries 

research team at the University of Nebraska-Lincoln (UNL) proposed “Digital Libraries, Intelligent Data Analytics, and 

Augmented Description: A Demonstration Project.” The proposal was awarded a research services contract from the 

Library of Congress. From July 16-to November 8, 2019, members of the Aida research team conducted a series of 

explorations and analyses to assist the Library of Congress in assessing possible applications of machine learning 

within the Library. Three broad goals framed this work: (1) develop and investigate the viability and feasibility of 

textual and image-based data analytics approaches to support and facilitate discovery; (2) understand technical tools 

and requirements for the Library of Congress to improve access and discovery of its digital collections; and (3) enable 

the Library of Congress to plan for future possibilities. 

This report summarizes the design of the demonstration project and the activities of the Aida research team; 

presents key findings resulting from these activities; makes recommendations for possible paths forward; and 

provides documentation for the major activities, including code, data, and reports-in-progress completed during the 

project. This report serves two main purposes: to document the work completed and to extrapolate from that work 

to broader implications for machine learning endeavors at the Library of Congress. 

2 PARTICIPANTS & ROLES 
UNIVERSITY OF NEBRASKA-LINCOLN 

§ Elizabeth Lorang, senior adviser 

§ Leen-Kiat Soh, senior adviser 

§ Yi Liu, research associate and developer 

§ Chulwoo (Mike) Pack, research associate and developer 

§ Ashlyn Stewart, research assistant 

LIBRARY OF CONGRESS† 
§ Meghan Ferriter, Chief (Acting) LC Labs/Senior Innovation Specialist 

§ Abbey Potter, Senior Innovation Specialist 

§ Jaime Mears, Senior Innovation Specialist 

§ Eileen Jakeway, Innovation Specialist 

§ Tong Wang, Senior IT Specialist, OCIO 

§ Lauren Algee, Senior Innovation Specialist 

§ Victoria Van Hyning, Senior Innovation Specialist 

3 TIMELINE 
JULY 16, 2019 
Project kick-off meeting held at the Library of Congress 

JULY 19-AUGUST 23, 2019 
First-round of iterative development, onsite at the Library of Congress 

 
† In addition to these key contributors, many others at the Library of Congress supported this demonstration project 

in a variety of ways, including through their hospitality, encouragement, brainstorming, and interest in this project. 

We are grateful for and indebted to their efforts. 
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AUGUST 26-NOVEMBER 8, 2019 
Second round of iterative development, offsite at the University of Nebraska-Lincoln 

NOVEMBER 6, 2019 
Delivery of preliminary results via virtual meeting 

NOVEMBER 7 – JANUARY 9 
Development of open repository of code, data, and documentation; development of final report 

JANUARY 10, 2020 
Delivery of final results via in-person meeting at Library of Congress 

4 CODE & DATA 
Code and descriptions of data are available via the Library of Congress’s GitHub organization page at the “Exploring 

ML with Project Aida” repository, https://github.com/LibraryOfCongress/Exploring-ML-with-Project-Aida. Following 

submission to the Library of Congress, code, data, and this report will also be available via https://projectaida.org. 

5 DEMONSTRATION PROJECT DESIGN & APPROACH 
With the size of the Library of Congress’s digital collections and the many potential areas of impact, we might have 

pursued any number of questions in this demonstration project. Scoping our work, both with regard to the 

questions we pursued and the number and type of explorations, was critical.  We anchored our work around two 

areas: (1) extracting and foregrounding visual content from Chronicling America (chroniclingamerica.loc.gov) 

through a variety of techniques and approaches and (2) applying a series of image processing and machine learning 

methods and techniques to minimally processed manuscript collections featured in By the People (crowd.loc.gov). 

We identified these areas of focus because they drew on collections already deemed significant by the Library of 

Congress and because they had a degree of ground-truthing work already completed. In addition, they offered the 

opportunity to explore the advantages and disadvantages and the strengths and weaknesses of 

computational/machine learning approaches as compared to data and information generated by experts, casual 

users, and researchers. Working with these collections had the further benefit of significant opportunity to create 

new, rich, and varied metadata about them, so that the Library might explore the ways in which more robust 

metadata might allow for alternative points of entry into the materials and the opportunity for Library staff and 

researchers to pursue questions of varying nature. 

Ultimately, we designed a series of explorations that allowed us to investigate a range of issues and challenges 

related to machine learning and the Library’s collections. The explorations were developed through an iterative 

process and in regular consultation with members of the Library of Congress staff, both to learn from their 

expertise and to make sure the questions we were pursuing were of value and interest to the Library. Through that 

process, some explorations merged, others concluded more quickly than others, and areas of inquiry seeded in 

one exploration began to sprout in others as well. Individually, the explorations pursued particular technical and 

collections-oriented questions. We also used the explorations as points of entry into—and paths to reflection 

about—larger issues, questions, and challenges for machine learning and cultural heritage.
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6 THE EXPLORATIONS 
This section presents an overview and details of six explorations: Document Segmentation; Graphic Element 

Classification and Text Extraction; Document Type Classification; Digitization Type Differentiation; Document Image 

Quality Assessment and Advanced Document Image Quality Assessment; and Document Clustering. Figure 1 and 

Table 1 identify and show relationships among the explorations and summarize them. In our look at each 

exploration, we identify guiding questions; outline and describe our approaches, techniques, and methods; present 

high-level results and analysis; and offer ideas toward future development and/or potential applications. 

 
FIGURE 1. VISUAL REPRESENTATION OF THE EXPLORATIONS AND THEIR RELATIONSHIPS TO ONE ANOTHER. 
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TABLE 1. THE EXPLORATIONS PURSUED AS PART OF THE DEMONSTRATION PROJECT AND THEIR SELECTED POTENTIAL APPLICATIONS. 
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First-Round Explorations   

Document Segmentation Find and localize 

image-like components 

in newspaper pages 

ü ü   ü   ü   

Graphic Element 

Classification and Text 

Extraction 

Find and localize 

graphical content, 

extract text from this 

content in newspapers 

ü ü   ü  ü    

Document Type 

Classification 

Classify manuscript 

collection pages as 

handwritten, printed, 

mixed 

ü    ü ü ü ü 

Document Image Quality 

Assessment 

Analyze quality of 

manuscript collection 

page images 
ü   ü ü ü ü 

Digitization Type 

Differentiation 

Classify manuscript 

collection images as 

digitized from original 

or microform 

ü   ü ü ü ü 

Second-Round Explorations   

Document Clustering Extract high-level 

features, cluster, 

investigate similarity 

ü   ü ü ü ü 

Figure/Graph Extraction Find and localize 

image-like components 

in newspaper pages 

ü ü   ü ü  

Advanced Document Image 

Quality Assessment 

Analyze quality of 

manuscript collection 

page images for 

compactness 

ü   ü ü ü ü 

Digitization Type 

Differentiation 

Fine-tune classification 

of manuscript 

collection images as 

digitized from original 

or microform 

ü   ü ü ü ü 
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6.1 EXPLORATION: DOCUMENT SEGMENTATION 

The goal of this exploration was to see if we could localize textual zones, figures, layout borders, and tables and then 

identify image-like components in historic newspaper pages. Currently, newspaper page images presented through 

Chronicling America are not zoned or segmented below the page level. In addition, content within a newspaper page 

is not identified or classified by genre, type, or other features. This exploration, then, was guided by the questions: 

how might we use image zoning and segmentation to generate additional information about newspaper pages in 

the Chronicling America corpus? Could image zoning and segmentation be used to pull out graphical content from 

Chronicling America newspapers? How might machine learning projects draw on ground truth or benchmark data 

already generated through crowdsourcing efforts? 

This exploration applied the dhSegment tool for historical document image processing to historical newspapers.3 

ResNet, a feature extractor in dhSegment, is capable of encoding an image down to a set of high-level visual features 
effectively and efficiently. We applied dhSegment to two sets of newspaper images, one set from the Library of 

Congress’s Beyond Words project (http://beyondwords.labs.loc.gov/#/), which is based on Chronicling America 

newspapers, and one from the Europeana Newspapers Project (https://www.primaresearch.org/datasets/ENP).  

In the Beyond Words project, members of the public drew rectangular zones around illustrations, photographs, 

comics, and cartoons in World War I-era newspapers, and users also transcribed captions for this content. In a 

subsequent stage of work, users could apply a typology to the graphical content, choosing among editorial cartoon, 

comics/cartoon, illustration, photograph, or map. Our expectation was that Beyond Words would provide ground 

truth data against which we might verify machine learning-based approaches to the same challenges (graphical 

content zoning).  

We obtained a subset of 1,532 newspaper page images from Beyond Words and corresponding data for graphical-

content zones. We used 1,226 images for training and 306 images for evaluation. In two different test scenarios 

(BW_1500_v1 and BW_1500_v2), when trained and evaluated on Beyond Words newspaper pages, we achieved 

best accuracy scores of 87% and 88%. Table 2 outlines results. Unfortunately, the relatively high accuracy scores are 

misleading upon further examination, since the model’s behavior of predicting most pixels to be background pixels 

is guaranteed to achieve high accuracy. The low values for the best mean intersection over union (mIoU) scores 

verify this problematic behavior in the model, as we observe only a 26% and 24% overlap between the target class 

and the model’s prediction. 

For further exploration of the approach, we also trained and evaluated the model on a set of 481 pages from the 

Europeana Newspapers corpus. These newspaper page images are already zoned and segmented, with the segments 

classed as background, text, figure, separator or table. These classes are different from the classes in the Beyond 

Words dataset, which were all classes of graphical content or background. When we trained and evaluated the model 

on the Europeana Newspapers, we were verifying against the respective classes of the set.  

In deploying on the Europeana Newspapers dataset in four scenarios (ENP_500_v1, ENP_500_v2, ENP_500_v3, 

ENP_500_v4), we achieved best accuracy scores of 88%, 89%, 91%, and 91%, and best mIoU scores of 64%, 64%, 

69%, and 69%. In these scenarios, text regions are included in the ground-truth, and thus the model’s simple guessing 

that everything is background is penalized. The high accuracy scores are more trustworthy in these scenarios, as 

further corroborated by the higher scores for mIoU. 

 
3 Seguin and Ares Oliveira, dhSegment; Ares Oliveira, Seguin, and Kaplan, “DhSegment.” 
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TABLE 2. RESULTS OF PAGE SEGMENTATION WHEN TRAINING AND EVALUATING THE DHSEGMENT MODEL ON TWO SETS OF HISTORICAL 
NEWSPAPERS, A ROUGHLY 1500-PAGE SET FROM BEYOND WORDS/CHRONICLING AMERICA AND AN APPROXIMATELY 500-PAGE SET FROM 
THE EUROPEANA NEWSPAPERS COLLECTION. 

Model Train/Eval 
Size 

Classes Weighted 
Training 

Pre-processing 
(Normalization) 

Best Score 
Accuracy mIoU 

BW_1500_v1 

1226/306 

0: Background 
1: Editorial cartoon 
2: Comics/cartoon 
3: Illustration 
4: Photograph 
5: Map 

No 

No 

0.87 0.24 

BW_1500_v2 Yes 

[10; 22; 20; 18; 8; 

22] 

0.88 0.26 

ENP_500_v1 

385/96 

0: Background 
1: Text 
2: Figure 
3: Separator 
4: Table 

Yes 

[5; 10; 40; 10; 35] 

No 0.88 0.64 

ENP_500_v2 Yes 0.89 0.64 

ENP_500_v3 
No 

No 0.91 0.69 

ENP_500_v4 Yes 0.91 0.69 

We did not conduct a broad deployment of the Europeana Newspapers model on Beyond Words/Chronicling 

America pages, because we did not have verifiable, commensurate ground truth across the sets. We did, however, 

conduct a limited test of the Europeana Newspapers-trained model (specifically ENP_500_v3) on Chronicling 

America page images, and the visual results are encouraging. See Figure 2, Figure 3, Figure 4, and Figure 5 for true-

positive correlations, according to visual inspection, as well as for examples of false-positives and false-negatives, 

respectively. 

 
FIGURE 2. SEGMENTATION RESULT OF ENP_500_V4 ON A CHRONICLING AMERICA IMAGE (SN92053240-19190805.JPG). CLOCKWISE FROM 
TOP- LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN 
BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A 
BRIGHTER COLOR. 
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FIGURE 3. SEGMENTATION RESULT OF ENP_500_V4 ON A CHRONICLING AMERICA IMAGE 
(SN84026820_00271765095_1917050501_0153.JPG). CLOCKWISE FROM TOP-LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) 
DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER 
PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A BRIGHTER COLOR. 
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FIGURE 4. SEGMENTATION RESULT OF ENP_500_V4 ON A CHRONICLING AMERICA IMAGE 
(SN82014086_00295866135_1917091301_0116.JPG). CLOCKWISE FROM TOP-LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) 
DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER 
PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A BRIGHTER COLOR. 
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FIGURE 5. SEGMENTATION RESULT OF ENP_500_V4 ON CHRONICLING AMERICA IMAGE (SN86063952-19190805.JPG). CLOCKWISE FROM 
TOP- LEFT: (1) INPUT, (2) PROBABILITY MAP FOR FIGURE CLASS, (3) DETECTED FIGURES IN POLYGON, AND (4) DETECTED FIGURES IN 
BOUNDING-BOX. IN THE PROBABILITY MAP, PIXELS WITH A HIGHER PROBABILITY OF BELONGING TO THE FIGURE CLASS ARE SHOWN WITH A 
BRIGHTER COLOR. 

6.2 EXPLORATION: GRAPHIC ELEMENT CLASSIFICATION AND TEXT EXTRACTION 

This exploration was similar to the document segmentation exploration and became closer in goal and scope to that 

exploration over its iterations. Initially, the goal of this exploration was to find and localize figures, illustrations, and 

cartoons present in historical newspaper page images; classify the graphical content; and extract any text from the 

graphical content in order to generate a transcription of the textual content. By its second iteration, this exploration 

focused on fine-tuning the identification of graphical content in historic newspaper page images and the distinction 

of graphical content regions from textual content regions. The questions that guided this exploration throughout its 

development included: how might we use image zoning and segmentation, and text extraction from graphical 

regions, to generate additional information about newspaper pages in the Chronicling America corpus? Could image 

zoning and segmentation be used to pull out graphical content from Chronicling America newspapers? What benefits 

do different types or approaches to zoning and segmentation have for various information tasks? What strategies 

might be necessary to deal with rare content types in the training and evaluation of machine learning systems? 

This exploration proceeded in two phases. The first phase established a conceptual model and workflow for a two-

stepped approach that would result in segmented and classified graphical regions from historic newspaper pages 

and the segmentation and recognition of textual content in the graphical regions. Conceptually, our approach was 
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based on dhSegment, but instead of combining U-Net4 and ResNet-505 as we did in the document segmentation 

exploration, we used the ResNeXt 6  classification model, a next-generation model from the ResNet that was 

employed in dhSegment. Such network combination belongs to the family of fully convolutional neural networks 

(FCN).  We call our FCN that uses ResNeXt “U-NeXt.” The goal was to see whether we could further enhance the 

results obtained with dhSegment by using this newer method. The model training was based on the pre-trained 

ResNeXt model for ImageNet. Finally, in the conceptual workflow, we planned to use EAST7 text detection to find 

textual regions in the graphical images and use an optical character recognition process to recognize the textual 

strings within the graphical zones. 

Our goal was to apply this conceptual model to newspaper page images from the Beyond Words project. In the 

above document segmentation exploration, the mIoU score was only 24%-26% on the Beyond Words dataset. We 

considered possible reasons that for the low mIoU scores. One possibility was that the feature extractor, ResNet, 

was not powerful enough to extract high-level features from the dataset for identification and classification. Notably, 

the ResNet model was reported by He et al. in 2015. However, in 2017, they reported a second-generation, ResNeXt, 

which beat the previous record on an ImageNet challenge.8 Another possibility was that the rareness of some types 

of regions, such as maps, which comprise 1% of the regions, might skew the training process. As a result, we decided 

to test the ResNeXt model. 

In addition, the data from Beyond Words were not sufficiently reliable for training purposes for this exploration.9 

One challenge with the data is that it does not include graphical content in advertisements; our model does not 

distinguish between graphical content in advertisements and graphical content in other types of content zones—

graphical content is graphical content, at the stage of graphical content recognition and segmenting. In addition, not 

all graphical content has necessarily been marked on a page in the Beyond Words dataset. Since machine learning 

models will try to find all graphical content within the input page, such missing graphical regions can confuse the 

model during the training process. Another challenge, which we explore more fully below, is that ground-truth 

regions are not necessarily tightly mapped to the actual shape of the graphical region. 

In its second phase of development, then, this exploration become a refinement of the original document 

segmentation exploration. We deconstructed the conceptual model described above and focused only on 

implementing the U-NeXt fully convolutional neural network for the purposes of graphical content extraction and 

classification. Our goal in doing so was to see if we could further improve upon the results reported by the 

dhSegment authors and the results we achieved in our document segmentation exploration that implemented 

dhSegment. 

In the second phase of this exploration, we first conducted a pre-training investigation, which involved training and 

testing on the Europeana Newspapers dataset, since it is more comprehensively labeled than the Beyond Words 

 
4 Ronneberger, Fischer, and Brox, “U-Net.” 
5 He et al., “Deep Residual Learning for Image Recognition.” 
6 Xie et al., “Aggregated Residual Transformations for Deep Neural Networks.” Compared to ResNet, ResNeXt uses 

grouped convolution (i.e. side-by-side convolution layers) in each residual block. The usage of grouped convolution 

was first mentioned in AlexNet. See Krizhevsky, Sutskever, and Hinton, “ImageNet Classification with Deep 

Convolutional Neural Networks.” 
7 Zhou et al., “EAST.” 
8 Russakovsky et al., “ImageNet Large Scale Visual Recognition Challenge.” 
9 For more on Beyond Words, see the Library of Congress Labs’ Experiments page, 

https://labs.loc.gov/experiments/?st=gallery Note as well that Beyond Words was not implemented with the 

purpose of creating training data or being used as training data. 
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data for our purposes. This pre-training investigation reached 91.30% pixel-wise accuracy and 57.19% for mIoU, with 

a testing performance of 81.90% pixel-wise accuracy and 48.18% mIoU. Note that the investigation did not reach 

the score of dhSegment on the ENP dataset in the document segmentation exploration. However, considering the 

ENP dataset and the Beyond Word dataset only share partial features, so  it is not necessary to train the investigation 

to its best state. In fact, the observed convergence indicated the parameters were getting trained to fit the task and 

the model was ready for fine-tuning.  

Then, we conducted a series of fine-tuning investigations, which involved four different approaches: 

1. The first approach trained and tested U-NeXT on the Beyond Words dataset without using the Europeana 

Newspapers-trained classifier.  This approach was meant to serve as a baseline design. We observed 

convergence in both training and testing curves, but the testing curve showed instability with rapid high 

and low variation during the investigation. Statistics showed that the classifier failed to recognize classes of 

editorial cartoons, illustrations, and maps. These three classes were the three rarest classes in the ground 

truth set, and the misrecognition issue is likely caused by the rareness of corresponding classes. 

2. The second approach used the Europeana Newspapers-trained classifier as the beginning classifier. We then 

trained and tested it on the Beyond Words dataset. We added this design because using a pre-trained 

classifier for a similar task could help the overall fine-tuning investigations address challenges with reliable 

ground truth when working only with the Beyond Words dataset. Though performance indicators appeared 

promising, upon further investigation, the classifier trained during the fine-tuning experiment attempted 

to classify many pixels as background pixels after training convergence. Therefore, while the performance 

statistics are better than the first fine-tuning experiment numerically, the actual performance is worse, 

since none of the object classes (specific types of graphical content) were recognized. 

3. The third approach replaced a deconvolutional layer with a resizing layer in the deep learning model. For 

this approach, we trained and tested on the Beyond Words dataset. This approach is designed to address a 

problem with the deconvolutional layer10; the resizing layer is perceived as an improvement on the overall 

technique. The pixel-wise testing accuracy is higher than in fine-tuning approach #1, but the mIoU is lower 

than in that fine-tuning approach. As with fine-tuning approach #2, we also found that pixel-wise accuracy 

and mIoU of the editorial cartoon, illustration, and map classes are zeros. However, the testing curve did 

not show the same instability as in fine-tuning approach #1. This result suggests that the resizing layer 

helped to address the challenge with the deconvolutional layer, so it is more stable than fine-tuning 

approach #1, though less accurate overall.  

4. The fourth approach performed a two-class segmentation and classification, instead of six-class processes 

on the Beyond Words dataset for both training and testing. We reduced the number of classes to two 

because the training dataset is biased where there is a predominantly large number of background pixels 

compared to other classes of pixels.11 Pixels in non-background classes comprise only 11.79% of the entire 

training dataset in total. By collapsing all the object pixels into one class, we can reduce the imbalance in 

the number of pixels in each class during training. The results indicate that training a classifier to learn 

information from rare classes is very hard. Combining five non-background classes into one class decreases 

the complexity of the task. The combined class segmentation outperformed the other fine-tuning 

experiments. 

 
10 Odena, Dumoulin, and Olah, “Deconvolution and Checkerboard Artifacts.” 
11 There are 88.21% pixels in background class, but for the rest of classes, only 0.71% in editorial cartoon class, 2.89% 

in comics/cartoon class, 1.38% in illustration class, 6.64% in photograph class, and 0.18% in map class. 
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Approaches two through four are variants of the first approach. See Table 3 for a summary of results for the pre-

training investigation and the four fine-tuning investigations. 

TABLE 3. AVERAGE PERFORMANCE OF PRE-TRAINING INVESTIGATION AND FINE-TUNING APPROACHES. 

 

Pre-Training 
Investigation 

Without Pre-
Trained 

Europeana 
Newspapers 

Classifier 

Using Pre-
Trained 

Europeana 
Newspapers 

Classifier 

Using Resizing 
Layers 

Combined Two-
Class Segmentation 

 Train Test Train Test Train Test Train Test Train Test 
Accuracy 91.30% 81.90% 89.08% 80.11% 89.42% 85.53% 88.90% 86.69% 91.76% 88.89% 

mIoU 57.19% 48.18% 50.43% 38.00% 41.21% 38.57% 51.31% 37.84% 71.44% 64.97% 

From these investigations, we conclude that U-NeXt—especially the combined two-class segmentation—is 

promising for segmentation and zoning. At the same time, the fine-tuning approaches offered evidence that the 

Beyond Words dataset was not sufficient ground truth for our purposes. We found two issues. First, non-identified 

or incompletely identified graphical images in the Beyond Words dataset appear to be widespread to an extent that 

is problematic for training. For example, as shown in Figure 6, a large portion of a photograph in the document is 

missing from the ground truth but is captured by our U-NeXt classifier. Second, the rectangular regions do not 

necessarily match to the actual graphical content. For instance, as shown in Figure 7, the ground truth region includes 

a large portion of the textual content. 

   
Newspaper Page Beyond Words Ground Truth U-NeXt Map 

FIGURE 6. THE BEYOND WORDS DATA, WHICH WE TREATED AS GROUND TRUTH, IS MISSING MUCH OF THE GRAPHICAL CONTENT ON THE 
PAGE, WHILE THE U-NEXT MAP APPEARS MORE REPRESENTATIVE OF THE ORIGINAL PAGE. 
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Newspaper Page Beyond Words Ground Truth U-NeXt Map 

FIGURE 7. EACH OF THE THREE COLUMNS WITH GRAPHICAL CONTENT HAVE MUCH LARGER BOUNDING BOXES IN THE GROUND TRUTH THAN 
WHAT CORRESPONDS TO THE ACTUAL GRAPHICAL CONTENT. THE U-NEXT MAP APPEARS MORE REPRESENTATIVE OF THE ORIGINAL. 

These challenges with the Beyond Words dataset as ground truth for this exploration also lead us to believe that our 

classifier may be more accurate than the current statistical results would suggest. The U-NeXt model tries to fit the 

exact shape of the figure and graph region. Figure 8 shows, for example, that the model tried to fit the exact shape 

of the eagle on the right-hand side of the newspaper page. Since the ground truth included rectangular bounding 

boxes, we are not comparing like to like in our pixel-wise and mIoU comparisons. 

   
Newspaper Page Beyond Words Ground Truth U-NeXt Map 

FIGURE 8. IN THIS CASE, THE “BUY LIBERTY BONDS” ADVERTISEMENT IS NOT REPRESENTED IN THE GROUND TRUTH, LIKELY BECAUSE IT IS AN 
ADVERTISEMENT AND THEREFORE OUT OF SCOPE FOR THE BEYOND WORDS PROJECT. THE U-NEXT MAP, HOWEVER, RECOGNIZES THE 
GRAPHICAL CONTENT AND CLOSELY FITS TO IT. 
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6.3 EXPLORATION: DOCUMENT TYPE CLASSIFICATION 

This exploration pursued whether we could effectively distinguish among handwritten, printed, and mixed (both 

handwritten and printed) documents within a collection of minimally processed manuscript materials at the Library 

of Congress. This exploration was guided by the questions: what features might be useful for influencing processing 

pipelines, for generating additional metadata, or for distinguishing among materials? How viable might large-scale 

indexing of documents be, for certain types of criteria? To what level of performance could we meta-tag document 

images? Would a deep learning model that had shown  remarkable performance for natural scene images also show 

promising performance for document images? Or, to be more precise, would a feature extractor trained with 

millions of natural scene images also capably extract useful features for document images? 

This exploration drew on current state-of-the-art methods in natural image and document classification. In 

particular, we extended the use of convolutional neural networks for classifying natural images to the task of 

classifying document images. Based on the findings of Harley et al. and Afzal et al., we used the VGG method with 

16 categories (VGG-16) pre-trained on the Ryerson Vision Lab Complex Document Information Processing 

(RVL_CDIP) dataset.12 The RVL_CDIP dataset, which is publicly available, consists of 400,000 document images that 

are divided into 16 evenly distributed classes. The dataset is provided in three different sets: training, validation, and 

test set. The training set contains 320,000 images of 16 different evenly distributed classes (i.e., about 20,000 images 

per class). Both validation and test sets together contain 40,000 images of 16 different evenly distributed classes 

(2,500 images per class).  

We first set out to reproduce the results reported in the work of Harley et al. and assessed classification 

performances of VGG-16, pre-trained on ImageNet, and trained and tested with RVL_CDIP dataset. The advantage 

of doing so is that once we created a model trained on this large-scale document image dataset, we can reuse the 

rich features that this model has learned for many document analysis tasks, such as for our current ask of document 

type classification. The entire training process took only three epochs to converge with promising classification 

results. This indicates that features obtained from natural scene images (i.e., ImageNet) are general enough to be 

applied to documents. The resultant classification performance metrics—precision, recall, and f1-score—are shown 

in Table 4. On average, each metric shows around 87%, which aligns well with the result reported by Harley et al.  

TABLE 4. PRECISION, RECALL, AND F1-SCORE OF VGG-16 AS TRAINED ON RVL_CDIP DATASET. THE ALPHABETIC LABELS CORRESPOND TO THE 
FOLLOWING LABELS: LETTER, FORM, EMAIL, HANDWRITTEN, ADVERTISEMENT, SCIENTIFIC REPORT, SCIENTIFIC PUBLICATION, SPECIFICATION, 
FILE FOLDER, NEWS ARTICLE, BUDGET, INVOICE, PRESENTATION, QUESTIONNAIRE, RESUME, AND MEMO. OUR CLASS OF INTEREST, 
HANDWRITTEN, IS BOLDED. 

 A B C D E F G H I J K L M N O P Avg 

Precision 86 74 98 89 89 73 90 99 89 92 87 91 78 91 92 88 87 

Recall 94 79 97 96 91 73 93 91 97 86 83 86 79 73 94 91 87 

F1 86 77 97 92 90 73 91 90 93 89 85 88 79 81 93 90 87 

Next, we generated our own model for the specific task of classifying documents in one of three types, handwritten, 

typed/typeset, or mixed (both handwritten and typed/typeset). For this task, we retrained the model obtained from 

 
12  Harley, Ufkes, and Derpanis, “Evaluation of Deep Convolutional Nets for Document Image Classification and 

Retrieval”; Afzal et al., “Cutting the Error by Half”; Simonyan and Zisserman, “Very Deep Convolutional Networks for 

Large-Scale Image Recognition.” 
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the above with a dataset derived from the Suffrage: Women Fight for the Vote campaign from By the People. The 

dataset for this exploration is hereafter referred to as suffrage_1002.  

The suffrage_1002 dataset had 1,002 manually classified images and was balanced across handwritten, 

typed/typeset, and mixed. This ground truth set was created by members of the project team. The entire dataset 

was split into three sets—training, validation, and test—with a ratio of 8:1:1. In order to keep the class balanced 

during this split, we dropped three datapoints, one of each class. The final size of the dataset was therefore 999 

images. See Table 5 for the breakdown by sets and class. 

TABLE 5. CONFIGURATION OF SUFFRAGE_1002 DATASET. 

 Handwritten Typed/Typescript Mixed Total 
Train 267 267 267 801 

Validation 33 33 33 99 

Test 33 33 33 99 

Total 333 333 333 999 

We use the same VGG-16 architecture as above, but the output tensor was adjusted to have a shape of 3, the number 

of classes specified in suffrage_1002. Overall, our model’s classification performance on the testing set shows about 

90% for precision, recall, and f1-score, as shown in Table 6. We believe that these scores, which are a bit lower than 

those reported above in our attempts to reproduce Harley et al., are due to challenging characteristics of mixed type 

document images; for example, mixed materials may have negligible or statistically challenging amounts of 

handwriting in typed document and vice versa. See Figure 9 for examples. 

TABLE 6. PRECISION, RECALL, AND F1-SCORES OF VGG-16 ON SUFFRAGE_1002 TESTING SET. 

 Handwritten Typed/Typescript Mixed Avg 
Precision 89 91 90 90 

Recall 97 94 79 90 

F1 93 93 84 90 

 

 
FIGURE 9. PREDICTION FAILURE CASES. IN THE LEFT EXAMPLE, THE MODEL CLASSIFIED THE DOCUMENT AS HANDWRITTEN RATHER THAN 
MIXED. NOTE THAT THE PRINTED REGIONS ARE VERY SMALL COMPARED TO THE HANDWRITTEN CONTENT IN THE IMAGE. IN THE RIGHT 



 16 

EXAMPLE, THE MODEL CLASSIFIED THE DOCUMENT AS PRINTED RATHER THAN MIXED. HERE, THE HANDWRITTEN REGION IS VERY SMALL 
COMPARED TO THE PRINTED REGION IN THE IMAGE. 

In the case of the examples in Figure 9, both images have technically been classified incorrectly, according to our 

current model and set of definitions. Both images depict documents that feature printed and handwritten content, 

and therefore both technically fit the definition of mixed. However, this example provides an opportunity to consider 

whether the actual mixed nature of these materials matters for processing purposes. If the Library of Congress were 

interested in this question for the benefit of helping to make decisions about how to handle particular types of 

materials—for example, that materials with significant handwritten content get passed to human experts, whether 

within the Library or outside of it—then materials with some, but limited print content are usefully grouped with 

handwritten materials. Likewise, if there was a strong mix of content types, that might also signal materials for 

human processing, whereas in the example of materials with minimal handwritten content, it may be fine to pass 

those materials off to more automated processes. 

6.4 EXPLORATION: DIGITIZATION TYPE DIFFERENTIATION 

The purpose of this exploration was to distinguish among digital images created through digitization from different 

source types. In particular, we sought to distinguish between items digitized from an original document item and 

those digitized from a microform reproduction of an original item. We expected that digitization source should be a 

relatively easy feature to distinguish and could have a variety of potential use cases for both internal processes and 

decision-making at the Library and for end users and researchers. A variety of questions sat behind this exploration. 

As with the document classification exploration, we wondered: what features might be useful for influencing 

processing pipelines, for generating additional metadata, or for distinguishing among materials? How viable might 

large-scale indexing of documents be, for certain types of criteria? To what level of performance could we meta-tag 

document images? We also wondered who might benefit from the ability to facet or search according to this 

particular criterion—digitization source—and how that might information might be made available. 

This exploration proceeded in two phases. In both, we used ResNeXt, a deep learning method, to differentiate among 

images digitized from an original and those digitized from a microform reproduction. All images for this exploration 

came from the minimally processed manuscript collections included in the By the People Civil War campaign.  

We first retrieved 36,103 images from the minimally processed Civil War materials and manually inspected 10,508 

images, or slightly less than 30% of the total images. We determined digitization source ground truth for each of 

these 10,508 images. We then sampled a subset of 1,200 images from the 10,508 in a balanced set (600 images of 

each type, digitized from original and digitized from microform). In a 10% test of 120 sample images, the classifier 

was 100% accurate in classifying images as digitized from an original item or from a microform. We had concern, 

however, that this 100% accuracy was likely too good to be true when deployed over a larger set of images. We 

therefore proposed to compare the ratio of items digitized from microform to items digitized from original items to 

more comprehensively evaluate our approach. Based on the ground truth classification of the 10,508 images, we 

would expect a 1:16 ratio of images digitized from microform to images digitized from original items across the Civil 

War dataset. 

In the second phase of this exploration, we fine-tuned the classifier, classified 36,103 images retrieved from the Civil 

War manuscript collections, and compared the number and ratio of expected classification to real classifications. In 

fine-tuning the classifier, we achieved a training accuracy of 98.52%, and a validation accuracy of 100%. In order to 

determine an ideal point between underfitting and overfitting the classifier, we calculated the harmonic mean of 

training performance and validation performance, to avoid both underfitting and overfitting.  
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We then used the fine-tuned classifier to classify the 36,103 images. Based on the first phase of this exploration, we 

expected that the image set would include 2,256 document images digitized from microfilm and 33,847 digitized 

from their original source. In reality, the classifier identified 2,834 images as digitized from microform and 33,269 

images as digitized from an original item. See Table 7. Therefore, while we expected a classification ratio of 1:16 

(microform to original), the achieved classification ratio was 1:11.74. The classifier was more aggressive in identifying 

images as having been digitized from a microform reproduction than we would have anticipated based on our initial 

tests. 

TABLE 7. BREAKDOWN OF PROJECTIONS AND ACTUAL CLASSIFICATIONS OF CONTENT AS DIGITIZED FROM MICROFORM OR DIGITIZED FROM 
AN ORIGINAL ITEM. 

Total Images Expected 
Microform Source 

Classified Microform 
Source 

Expected Original 
Source 

Classified Original 
Source 

36,103 2,256 2,834 33,847 33,269 

Without identifying the ground truth of each of the 36,103 items, we cannot be sure if the 1:16 ratio is entirely 

accurate. However, we do know that the classifier was more aggressive in identifying items as digitized from 

microform reproductions than in classifying them as digitized from an original item. For example, each of the items 

in Figure 10, Figure 11, Figure 12, and Figure 13, while actually digitized from original items, were classified as being 

digitized from microform reproductions. 

 
FIGURE 10. FACING PAGES OF A DOCUMENT, DIGITIZED FROM THE ORIGINAL, THAT THE CLASSIFIER CLASSIFIED AS HAVING BEEN DIGITIZED 
FROM MICROFORM. THERE IS MINIMAL CONTENT ON THE PAGES. 
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FIGURE 11. A HANDWRITTEN MANUSCRIPT PAGE IMAGE, DIGITIZED FROM THE ORIGINAL, AND CLASSIFIED BY OUR CLASSIFIER AS HAVING 
BEEN DIGITIZED FROM MICROFORM. THE CONTRAST OF THE IMAGE IS LOW. 

 
FIGURE 12. A DIGITAL IMAGE OF A COIN, DIGITIZED FROM THE ORIGINAL ITEM, AND CLASSIFIED BY OUR CLASSIFIER AS HAVING BEEN 
DIGITIZED FROM A MICROFORM REPRODUCTION. 
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FIGURE 13. A DIGITAL IMAGE OF A PHOTOGRAPH, DIGITIZED FROM THE ORIGINAL ITEM, AND CLASSIFIED BY OUR CLASSIFIER HAS HAVING 
BEEN DIGITIZED FROM A MICROFORM SOURCE. 

We believe these misclassifications were due to limitations of our training set, which did not include blank pages 

digitized from original items, photographs (that is, photographs of people that are included in the manuscript 

collections, for example), images with poor document contrast, or 3-d objects represented in the collections. 

In the future, two options could effectively improve the performance further. First, we can expand the training 

database to include more examples and types of materials. Second, we can apply a pre-processing step to normalize 

the document image quality for the collection before the prediction stage. Overall, however, results were promising 

and suggest that automated type differentiation is viable and computationally cheap. 

6.5 EXPLORATION: DOCUMENT IMAGE QUALITY ASSESSMENT (DIQA) & ADVANCED DIQA 

This exploration set out to analyze the quality of document images in minimally processed manuscript collections 

based on a variety of criteria with the goal of using information about image quality to inform future processes and 

toward making this information available for researchers looking for particular kinds of images (or images of 

particular quality). This exploration was guided by the questions: how might we distinguish among materials that 

most need human intervention, whether by Library of Congress staff or via crowdsourcing and the public, and those 

materials that might be well-suited to machine approaches? And when might materials be best suited to a combined 

approach? Could image quality assessments be useful in compiling ground truth and benchmarking sets in some 

capacity? Likewise, might such features be useful further downstream for users, to be able to facet for difficulty, for 

example? How might metadata about image quality of document images enrich understanding of individual items 

and of collections and corpora? To what extent can quality be computationally assessed, and might it help to better 

understand overall visual attributes of a dataset? 

This exploration proceeded in two phases. In the first phase, we measured a set of image properties for each of 

35,990 images retrieved from minimally processed manuscript collections included in the By the People Civil War 
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campaign. These image properties included skewness, contrast, range-effect, and bleed-through (background 

noise).13  

6.5.1 DOCUMENT IMAGE QUALITY ASSESSMENT (DIQA) 

6.5.1.1 SKEWNESS 
The skewness measure ranges from a score of -2 to 2, with any score other than 0 indicating skew is present. For 

example, a skew of -2 indicates significant counterclockwise skew, while a score of 2 indicates significant clockwise 

skew. Of the 35,990 images, nearly 50% of the images show no or negligible skew (a score of 0, or between 0 and 

|1|). Nearly 44% of the images (43.63%), are significantly skewed. See Chart 1. 

CHART 1. SKEWNESS MEASURES OF 35,990 IMAGES FROM MINIMALLY PROCESSED CIVIL WAR COLLECTIONS. 43.63% OF IMAGES ARE 
SIGNIFICANTLY SKEWED (SCORE |2|). 

 

6.5.1.2 CONTRAST 
Based on earlier work, the Aida team has determined that a contrast score of 30 or above indicates a good quality 

contrast in a digital image of a historic document;14 the higher the contrast score, the better the visual quality. We 

plotted contrast over time (original date of document page, based on existing metadata) and determined that the 

two decades of materials represented in the Civil War collection fell below the threshold for a good contrast score: 

1860–1869 and 1930–1939. See Chart 2. 

 
13 The document image quality assessment algorithms used in this exploration were developed as part of the Aida 

team’s earlier efforts to assess qualities of newspaper page images from 1834 to 1922. See Lorang, Soh, Liu, Pack, 

and Rahimi, “Using Chronicling America’s Images to Explore Digitized Historic Newspapers & Imagine Alternative 

Futures.” 
14 Lorang, Soh, Liu, Pack, and Rahimi, “Using Chronicling America’s Images to Explore Digitized Historic Newspapers 

& Imagine Alternative Futures.” 
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CHART 2. AVERAGE CONTRAST SCORES OF MATERIALS WITHIN DECADE-RANGES. FOR EXAMPLE, MATERIALS FROM THE PERIOD 1840-1849 
HAVE AN AVERAGE CONTRAST SCORE OF 70.22, WHILE MATERIALS FROM THE PERIOD 1930-1939 HAVE AN AVERAGE CONTRAST SCORE OF 
23.87. 

 

While images from 1930 to 1939 result in lowest contrast score, the significant majority of images in the collection—

roughly 90%—date to between 1860-1869. These dates also overlap with the actual years of the Civil War, making 

the images from that decade most critical for further analysis. When we look more closely at the contrast scores 

within this decade, 1861, 1862, 1863, and 1864 all show average contrast scores below 22. See Chart 3. These data 

suggest that materials from most of the actual Civil War years have the lowest contrast in the collection and also 

that their contrast is below the threshold for good visual contrast. The low contrast can make these materials 

challenging for computational processing and also for human readers. 

CHART 3. AVERAGE CONTRAST SCORES OF MATERIALS FROM THE DECADE 1860-1869 BY YEAR. MATERIALS FROM 1861 HAVE AN AVERAGE 
CONTRAST SCORE OF 21.50, FOR EXAMPLE, WHILE MATERIALS FROM 1868 HAVE AN AVERAGE CONTRAST SCORE OF 48.22. 

 

We suspect that the low score could be document images that are digitized from handwritten letters, shown in 

Figure 14. There are two persistent features among these letters that could lower the contrast score. First, the 

original paper is often yellowish in hue. Second, the ink or pencil is often light—again, whether due to original 

inscription or time, or a combination of elements.  
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FIGURE 14. AN IMAGE WITH A LOW-CONTRAST SCORE FROM THE CIVIL WAR YEARS. FEATURES OF THIS IMAGES, SUCH AS THE COLOR OF THE 
PAPER AND THE LIGHT INK INSCRIPTION, MAY BE COMMON ACROSS THE MATERIALS, LEADING TO OVERALL LOW CONTRAST SCORES. 

6.5.1.3 RANGE-EFFECT 
The lower the range effect score, the better the quality of the image with regard to this feature. An ideal score is 

zero, and our team’s earlier work with historic newspapers suggests that a range-effect score lower than three is 

indicative of a good-quality image. The materials from the decade 1860-1869 have an average range-effect score of 

2.99. With materials in this decade comprising 90% of the images in the set, we believe range effect is not a 

substantial challenge for images in the Civil War collections. There are some noticeable outliers, as show in Chart 4, 

though in the case of the images from the period 1930-1939, the average score was significantly affected by two 

images with very high range-effect scores. 

CHART 4. AVERAGE RANGE EFFECT OF THE CIVIL WAR COLLECTION OVER TIME. OVERALL, RANGE EFFECT IS LOW, WITH A SPIKE IN 1930-1939, 
LIKELY ATTRIBUTABLE TO A COUPLE OF DOCUMENTS IN A SMALL SET OF MATERIALS FROM THAT DECADE. 
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6.5.1.4 BLEED-THROUGH 
Our analysis indicates that very few of the images studied suffer from significant bleed-through, which is a measure 

of noise in the overall image. While we do not have an objective measure for a good bleed-through score (meaning 

minimal bleed-through is present), an ideal score is zero. The majority of the 35,990 images return low bleed-through 

scores. See Chart 5. In this test, there are 76 images from the decade 1940-1949 that have high bleed-through scores 

and cause the average to spike in that decade. 

CHART 5. AVERAGE BLEED-THROUGH/NOISE IN MATERIALS FROM THE CIVIL WAR COLLECTION, BY DECADE. 

 

One caveat, however, is that in our processing, a document image is first converted into a grayscale image by the 

evaluation algorithm. Many of the pages in the collection are a yellow-hued paper that results in a dark background 

after the conversion. The presence of a dark background affects bleed-through evaluation and may result in a faulty 

evaluation. 

6.5.2 ADVANCED DIQA 
In the second iteration of DIQA, we combined elements of the original DIQA, document type differentiation, and 

document image segmentation explorations. Specifically, we measured a document image’s compactness. In this 

case, compactness represents the number of zones (i.e., text blocks, figure) in a document image and may be 

considered as an indicator of document complexity.  

To proceed, we first assessed the compactness measures obtained by two segmentation algorithms on a dataset 

with known, reliable ground-truth.  We then applied the compactness measure to minimally processed manuscript 

collections from the Civil War. Finally, we compared our measure of complexity with difficulty scores ascribed to 

materials through the Library of Congress’s By the People site, to see if we could determine a correlation between 

our measure of complexity and document difficulty scores. 

The two document segmentation algorithms used were (1) non-machine-learning, Voronoi diagram-based 

algorithm; and (2) machine-learning-based algorithm, dhSegment, used in other explorations reported here. We 

tested the two segmentation algorithms on 430 document images collected from the Europeana Newspapers 

dataset and counted the number of regions segmented by each algorithm. Then, we compared the result with the 

number of actual regions stored in the ground truth. See Table 8 and Chart 6. 
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TABLE 8. COMPARISON OF ACCURACY OF COMPACTNESS OF TWO ALGORITHMS. 

 Voronoi-based 

Segmentation 

Deep learning-based 

Segmentation 

Mean Differences 75 77 

STD Differences 97 154 

 

CHART 6. THE COMPACTNESS OF THE EUROPEANA NEWSPAPERS DATASET. 

 

Based on the mean and standard deviation of the difference between the number of zones detected by the 

algorithms and the ground truth, the compactness obtained by the non-machine-learning-based segmentation 

algorithm is slightly better than the machine-learning-based algorithm. In addition, when we looked at the number 

of zones and the compactness of the newspapers dataset, even though the number of zones detected by the two 

algorithms does not perfectly match with the number of actual zones, we observed a certain degree of similarity 

between compactness and the actual busyness of document images. 

With this understanding, we then turned to several minimally processed manuscript collections from the Civil War, 

which are featured on By the People and are part of the Civil War campaign. Specifically, we used the Veroni-based 

approach to assess the compactness of four digitized document image collections, identified as “Civil War,” “Clara 

Barton,” “Letters to Lincoln,” and “Walt Whitman.” We analyzed within collections and by year/across time. 

Three collections—Civil War, Letters to Lincoln, and Walt Whitman—show similar compactness distributions. The 

Clara Barton collection shows a thicker tail, which indicates that images in this collection tend to have a busier layout. 

Likewise, the Clara Barton collection shows notable changes in compactness across time represented in the 

collection. Our results suggest that items in the Clara Barton collections from 1862 to 1869 have more complex and 

busier layouts than those from 1850 to 1861. In the other three collections, we did not find notable compactness 

differences by time period. 
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Finally, we wondered if we might find a correlation between our compactness score and the difficulty score applied 

to an image through the By the People platform. We wondered: did the compactness, or busy-ness, of an image, 

which can be understood as a marker of complexity, correspond to images with higher difficulty scores? Ultimately, 

we could not correlate our measure of compactness with the difficulty score from By the People. 

The difficulty score itself may not match human perception of difficulty as complex, non-linear relationships exist 

among visual features. In general, image quality assessment includes both machine and human perceptions of 

quality of an image. For machine perception, quality assessment evaluates difficulties to predict or categorize an 

image for a machine. And for human perception, quality assessment evaluates difficulties in understanding and 

interpreting an image based on the visual appearance. 

6.5.3 POTENTIAL APPLICATIONS 
Much of this this exploration did not apply machine learning and instead was purely an image processing and image 

analysis exploration. We pursued it as part of this machine learning project in order grapple with which types of 

investigations require machine learning and when might other computational approaches be helpful to doing more 

with digital collections. In addition, such an exploration can facilitate future machine learning applications and 

endeavors. In cultural heritage digital libraries, administrative and descriptive metadata are common, even if the 

descriptive metadata are often limited. Various of our other explorations throughout this demonstration project, 

such as approaches to segmentation and classification, are toward enriching descriptive metadata and also have 

implications for enhanced structural metadata. As researchers begin to process large quantities of document images 

to develop robust classifiers or to develop generalizable automated systems, there is an increasing need for 

metadata about the image quality of the digitized document images, such as average intensity of an image, contrast, 

range effects, layout structure, etc., such that researchers might query and retrieve specific subsets of document 

images based on these qualities for testing. 

6.6 EXPLORATION: DOCUMENT CLUSTERING 

This exploration extended from the initial documentation segmentation exploration and applied clustering to 

document images. Drawing on our other work with ResNet and dhSegment, we wondered whether document 

images clustered together share similar visual features recognizable to human observers. For example, would page 

images with graphical content cluster? Could we discern other clustering features? Could such clusters be useful in 

decision-making, for metadata generation, or other processes? 

Two assumptions shaped this exploration. The first was that the deep visual representation of each datapoint 

contains enough feature information to be clustered. Second, in the clustered manifold, datapoints residing in the 

same neighborhood will share similar visual metadata with one another. 

This exploration proceeded in two parts. In both parts, we used dhSegment to extract high-level visual features and 

then clustered the features using t-SNE, a state-of-the-art clustering method.15 The dataset was a set of 96 page 

images from the Europeana Newspapers collection. From each of the 96 page images, we extracted a set of feature 

maps—so-called latent space—learned by a deep model, the ResNet-50 + U-Net that we trained for the document 

segmentation exploration. In this approach, the size of the latent space is calculated by the formula image width/32 

x image height/32 x 2049. 

This exploration faced two challenges from the outset. First, the sizes of the input images varied, and they could not 

be reduced to the same proportions without distorting the images and thus their visual features. The size differences 

 
15 Maaten and Hinton, “Visualizing Data Using T-SNE.” 
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were due to variation in the original dimensions of the newspapers as well as to variations introduced during the 

microform process (how much non-newspaper space was captured in the duplication process, for example). These 

differences meant that the size of our latent space was inconsistent. A second challenge for this exploration was that 

the latent space was too large. The resolution of an input image might be 1800 x 2400, meaning that the 

corresponding latent space became 1800 x 2400 x 2408. This scenario would contain redundant information and 

degrade clustering performance in both quality and computation time. To address these challenges, we performed 

dimensionality reduction recorded the intensity of features but not their spatial location.  

These reduced latent space feature maps were then clustered using t-SNE.  Ninety-six (96) datapoints in 2048-

dimensional space grouped into roughly three clusters in two-dimensional space. Once the images were clustered 

in this low-dimensional space, we visually inspected and analyzed for (1) intraclass correlation, or whether 

datapoints in the same cluster share similar visual features, and (2) interclass correlation, or whether different 

clusters show dissimilarity to each other.  

In the first part of this work, a visual inspection of sampled images from the same clusters does suggest shared visual 

features; for example, all four images in each box in Figure 15 show similar degrees of brightness and contrast. This 

result implies that there is a certain amount of intraclass correlation; images in the same cluster somewhat resemble 

each other.  

 

(A)                                                              (B)                                                                  (C) 
FIGURE 15. IMAGES FROM THREE DIFFERENT CLUSTERS. IMAGES IN THE SAME CLUSTER SHARE SIMILAR CHARACTERISTICS, WHEREAS OTHER 
CLUSTERS SHOW DIFFERENT CHARACTERISTICS. FOR EXAMPLE, IMAGES IN (A) SHOW HIGH CONTRAST AND SIMPLE LAYOUT STRUCTURE. THE 
IMAGES IN (B) SHOW A RELATIVELY GRAY APPEARANCE WITHOUT FIGURE COMPONENTS. THE IMAGES IN (C) SHOW A RELATIVELY DARKER 
APPEARANCE WITH FIGURE COMPONENTS. 

Following the first part of this exploration, we questioned whether the clustering results were simply based on the 

intensity value of the images. Thus, in the second part of this exploration, we clustered deep visual representations 

extracted from images that have been normalized to have zero mean and a unit standard deviation of intensity 

value. See Figure 16. From this second phase of the exploration, we observe two things. First, the clustering result 

using the deep visual representation excluding intensity shows a similar pattern to that of using the deep visual 

representation including intensity. This outcome suggests that the performance of our clustering approach is not 

based primarily on intensity features. Second, based on the observation that some datapoints sharing similar layout 

structures are slightly separated from each other compared to the first experiment clustering result, intensity does 

have an effect on the clustering process, even if it is not a primary basis of clustering.  



 27 

 
(A)                                                              (B)                                                                  (C) 

FIGURE 16. IMAGES FROM THREE DIFFERENT CLUSTERS FOLLOWING INTENSITY VALUE NORMALIZATION. THE RESULTS SHOW SIMILAR 
CLUSTERING PATTERNS AS IN THE PREVIOUS FIGURE. 

This exploration suggests that a set of deep visual representations of document images can be mapped into a low-

dimensional space efficiently and effectively and neighboring datapoints show considerable visual similarity. This 

visual similarity is not based primarily on simple intensity features but rather on high-level visual features, such as 

layout density. We see potential in document clustering for enriched metadata as well as in using visually similar 

images for launching further study of materials within the Library of Congress and for allowing researchers/users to 

see visually similar images to those they are currently exploring.  

For future development, we recommend looking at unsupervised approaches in order to build a more generic 

clustering solution not limited to a particular document domain or corpus. We also recommend exploring more 

sophisticated approaches to reducing dimensionality than what we have adopted here, in order to retain spatial 

information. And, we imagine combining this clustering approach with the results of document image quality 

assessment and the notion of a document complexity score, in order to see if there is a correlation between image 

quality assessment, complexity, and clustering.  

7 DISCUSSION 
The explorations framed above only scratch the surface of the types of investigations to be pursued with machine 

learning and the information that can be gleaned from and about digitized materials, the collections in which they 

sit, and about organizational and institutional practices and beliefs. We knew from the outset of this demonstration 

project that scoping our work would be crucial; we were already aware of the magnitude of possibilities and potential 

investigations, whether for a short-term project such as this one or more sustained research and development. 

Nonetheless, through the above explorations, we developed a heightened awareness of the number of possibilities 

and challenges, both those social and technical, as well as of their scale. In this section, we move from the more 

specific questions and narrower areas of focus pursued in the explorations to a set of themes, ideas, and questions 

that served as a backdrop to or emerged over the course of the larger project.   

7.1.1 SOCIAL 
Processing image and textual data with existing machine learning platforms and programs is increasingly accessible. 

That is not to say that doing so is exactly plug-and-play, but the technical, conceptual, and domain knowledge needed 
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to simply pass data in to a machine learning pipeline and obtain some results appears lower each year. This perceived 

simplicity, however, hides significant complexity, nuance, assumptions and decision-making, and labor. 

Furthermore, this perceived simplicity has the potential to mask the implications of machine learning-generated 

knowledge, implications which range from the humorous and mundane to the profound and life-changing. 

Domains considering implementing machine learning must engage deeply and critically with the technology, what it 

does, and what it means. For cultural heritage digital libraries, now is a critical moment to grapple with 

epistemologies of machine learning and the knowledge it structures, shapes, and appears to codify. Some elements 

of these epistemological conversations may transcend domains and applications, but these conversations also must 

be rooted in the specificities of the cultural heritage sector. In particular, libraries must grapple with their historical 

foundations and practices and with the potential consequences of these practices for machine learning. Previous 

and ongoing collecting and description practices, for example, were and are colonialist, racist, hetero- and gender-

normative, and supremacist in other structural and systemic ways. These understandings are the foundation on 

which training and validation data will be created and assembled; they will become reinscribed as statements of 

truth, even as we elsewhere champion the potential of computational approaches to uncover hidden histories, 

identities, and perspectives in collections. To engage machine learning in cultural heritage must mean confronting 

these histories, committing to the hard work of acknowledgment and rectification, and not simply reproducing them 

and giving them a whole new scale of power. There should not be a future for machine learning in digital libraries 

that is not first and foremost committed to, in the words of Thomas Padilla, “responsible operations” and to all of 

the ongoing, cross-cutting work that responsible operations entail.16 

Early in this demonstration project, Meghan Ferriter framed a range of different types of machine learning 

explorations and their outcomes. These included machine learning in the Library of Congress for description, 

discovery, and delight.17 Ferriter’s framing highlights another important feature in considering machine learning for 

digital libraries. Each of these endeavors--machine learning for description, discovery, and delight—has the potential 

to help people see materials from new angles, to peruse them in alternative ways, and to begin to frame additional 

questions and ways of thinking. At the same time, each of these purposes foregrounds different values and carries 

with it a different set of requirements and responsibilities. Naming and framing such purposes can help us think 

about the requirements and responsibilities of projects with these different ends. Building on Ferriter’s “three Ds,” 

we add as well “deployment” and “debate/dialogue.” These categories need not be mutually exclusive, nor do we 

imagine a prescription for how machine learning in any of these realms should proceed. Instead, as a community of 

practice and as communities of researchers, what do we expect from projects and applications that proceed with 

these—and other—purposes in mind? Perhaps most critically, for any project that is about large-scale deployment, 

or a deployment of machine learning that may have significant implications for reasons beyond scale, what 

expectations do we hold as to what such projects must do, consider, make transparent? What contexts must we be 

able to see and understand?  

7.1.2 TECHNICAL 
Across the above explorations, several high-level themes and questions routinely surfaced related to what we might 

consider technical aspects of supporting and pursuing machine learning in the Library of Congress.  

The first is that on a basic level, computational access to the Library of Congress’s digital objects is relatively 

straightforward. We were able to retrieve significant data—image, textual—via the Library’s application 

 
16 Padilla, Responsible Operations. 
17 Ferriter, et al., Kick-off meeting. 
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programming interface and other bulk download options. This collections as data approach is an important layer for 

machine learning.  

Even with this relatively straightforward baseline access to the digital materials, however, we depended on our 

inside access to people at the Library, made possible through this demonstration project, in order to make sense of 

some of the data. For example, what does the difficulty score encoded in the Beyond Words JSON data mean? How 

was it determined and by whom? How do the coordinates and size information in Chronicling America OCR.xml files 

correspond with size and coordinate information in Beyond Words? Are there existing values for digitization source 

type for digital collections and items? Such questions and challenges may suggest the need for additional levels of 

documentation and/or to new types of reference support needed in the Library of Congress as it facilitates emergent 
areas of research with its digital collections. We anticipate that the Library’s Mellon-funded project, Computing 

Cultural Heritage in the Cloud, will further advance thinking and conversations on these topics. 

Basic, computational access to digital collections ticks one box in the roadmap toward machine learning. Machine 

learning approaches also require accurate ground truth data from which to learn and validate. In the case of the 

explorations framed above, even when it seemed we could utilize existing Library of Congress data—generated by 

in-house experts or members of the public through crowdsourcing—as ground truth, ground truth data proved 

challenging. Ultimately, we had to create ground truth sets ourselves or turn to externally available datasets that 

provided the type/nature of ground truth information needed. Sometimes, we had to create these ground truth sets 

because the data did not otherwise exist as verifiable data, as in the case of the handwritten-typed-mixed project, 

for example. In other cases, the nature of the ground truth did not fit with our proposed approach, as in the 

difference between the rectangular bounding boxes of the Beyond Words project and the shape-fitting 

segmentation of our efforts in document segmentation and graphical content extraction. This reality about ground 

truth data was not wholly unexpected and is not a criticism of the Library’s efforts or of individuals’ labor and effort 

over time. What it may suggest, however, is that the bibliographic information and collections-centered metadata 

previously pursued in libraries is a limited vision of what will be needed for machine learning applications and new 
areas of research. 

The lack of robust, varied, sizable, well-documented ground truth is a significant technical challenge to the 

development of machine learning approaches for cultural heritage. Cultural heritage digital libraries need ground 

truth data particular to their types of materials and also relevant to the type and variety of questions information 

professionals, researchers of various domains, and other users wish to pursue about these materials. In broad 

strokes, machine learning models developed and trained on other types of ground truth sets skew toward the 

contemporary and born-digital and are transferable to digitized historical materials only to a point. Maringanti, 

Samarakoon, and Zhu report, for example, that the current learning models for photograph description have been 

developed on photographs of the modern world and do not fit well with historical photographs in a research library’s 

collections.18 Likewise, historical materials may introduce additional challenges of noise and quality, whether due to 

material conditions, legacies of care, intervening technological processes, and more. Furthermore, datasets for 

competitions that focus on historical documents are relatively small, they are not comprehensive of the range of 

materials in collections as large and diverse as those in cultural heritage institutions, the statements about ground 

truth represented in them are typically narrow in application, and such ground truth sets are often siloed. 

The challenges around ground truth connect with other questions that surfaced across many of our explorations. 

These questions included, how might data created by users via the Library of Congress’s crowdsourcing projects be 

used as ground truth data? What size of ground truth and training sets are necessary for different purposes? Are 

 
18 Maringanti, Samarakoon, and Zhu, “Machine Learning Meets Library Archives.” 
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ground truth data created for one purpose transferrable for other purposes? What happens when we attempt to 

extrapolate from ground truth created for one purpose to another? Or when there isn’t a direct match between 

ground truth data and output data? 

Likewise, as a backdrop to a number of the explorations, we wondered about the interplay of human expertise and 

processes and machine knowledge and processes. What human-computer processes might be viably and validly 

adopted and operationalized as, say, part of a daily routine? What human-computer approaches are viable and valid 

in terms of effectiveness and efficiency in order to address issues of scalability? What value might there be in cross-

learning, loop-learning, and cross-processing, where machines learn from humans, humans respond to and adapt 

understanding based on machine learning, and this looped learning informs processes and decision-making? Rather 

than seeing machine learning as an end, how can the Library of Congress embed and value critique across such a 

system, so that both human and machine assumptions are routinely tested? What are the foundational data and 

metadata needed and required to facilitate cross-learning and cross-processing? What is the place for data-science 

paradigms, where problems or issues are derived bottom-up—are surfaced through the collections and feature 

analysis—rather than top-down? We would be premature and ill-equipped to answer such questions based on only 

the explorations above, but we highlight them here as recurrent questions and provocations over the course of the 

explorations. 

7.1.3 SOCIAL-TECHNICAL 
In separating the technical from the social above, our intention is not to suggest a binary, a neat division, or a siloing 

of responsibility. 19 There is a critical interplay between the social and the technical in machine learning, not least 

because machine learning has significant social consequences. At best, machine learning will be incomplete without 

the social and cannot proceed without the technical, and technology cannot be divorced from the societies and 

individuals that develop it or the social realities it constructs. Our distinction above is largely one of convenience, 

and the lines between the social and technical blur quickly in our recommendations. 

8 RECOMMENDATIONS 
As the largest library in the world and with the ambitious, forward-looking digital strategy announced in 2019, the 

Library of Congress is uniquely situated to play a leadership role in advancing the theory and practice of machine 

learning in the cultural heritage sector. With this leadership role in mind, we propose two top-level 

recommendations for the Library of Congress’s efforts around machine learning and as it moves forward in its work 

to “throw open the treasure chest,” “connect,” and “invest in our future.”20 The first is that the Library should focus 

the weight of its machine learning efforts and energies on social and technical infrastructures for the development 

of machine learning in cultural heritage organizations, research libraries, and digital libraries. Second, we 

recommend that the Library invest in continued, ongoing, intentional explorations and investigations of particular 

machine learning applications to its collections. 

What we do not recommend at this particular moment in time is the broad application of machine learning to the 

Library’s digital collections with the purpose of broadly making claims about the materials or restructuring access to 

them. On a very practical level, such broad application would be premature due to the challenges with ground truth 

data and validation and considering the many critical conversations yet to take place around whose, and what, 

human knowledge becomes the basis of machine learning. We advise against a “more product, less process” 

 
19 Padilla refers to the “technical, organizational, and social challenges” as multiple, integral facets of a machine 

learning agenda for libraries. See Responsible Operations, p. 6. 
20 Library of Congress, “Digital Strategy for the Library of Congress.” 
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approach to machine learning applications. The ways in which machine learning-generated knowledge stands to 

influence decision-making and codify particular understanding are too profound and too powerful to adopt such an 

approach, or make such a commitment, at this nascent stage. 

Below, we provide more detail about the two top-level recommendations and offer several short- and medium-term 

recommendations in support of these top-level recommendations. Each of these top-level recommendations 

directly map to the three goals of the “Digital Strategy for the Library of Congress.” In addition, while we hope the 

role and importance of people will be clear in everything that follows, we want to say directly here: people are 

central to all of the recommendations that follow. None of the recommendations imagine a library without 

information professionals and experts. Any future for machine learning in libraries will require an investment in 

people with many types of expertise, and a best-case future for machine learning in cultural heritage organizations 

is that the people who work in them are able to bring even more of their experience and expertise to bear. 

8.1 FOCUS THE WEIGHT OF THE LIBRARY’S MACHINE LEARNING EFFORTS AND ENERGIES ON 

SOCIAL AND TECHNICAL INFRASTRUCTURES FOR THE DEVELOPMENT OF MACHINE LEARNING 

IN CULTURAL HERITAGE ORGANIZATIONS, RESEARCH LIBRARIES, AND DIGITAL LIBRARIES.  

We recommend that the Library dedicate itself to a range of infrastructure projects that will create a strong 

foundation for machine learning in the profession and field, particularly as applied to historical cultural heritage 

materials. The paramount machine learning need within the cultural heritage sector at this time is the development 

of infrastructure. 21  These infrastructures include educative infrastructures, through which cultural heritage 

professionals develop further literacy in computational thinking and methods, particularly through the lens of critical 

information studies. The needed infrastructures also include platforms for conversations—and the pursuant 

conversations themselves—about the language of description and the corresponding social and cultural values 

signaled in that language, as well as about who we engage in these processes and applications. Likewise, the needed 

infrastructures include pathways for gathering and delivering machine learning models and verifiable learning data 

that extend beyond individual projects, as well as for bringing together cross-domain researchers toward the 

purpose of machine learning for cultural heritage.  

This top-level recommendation, that the Library focus the weight of its energies on social and technical 

infrastructures, connects with many of the goals in the Library’s digital strategy. This recommendation aligns 

particularly well with the Library’s interests in maximizing use of content; supporting emerging styles of research; 

welcoming other voices; driving momentum in our communities; cultivating an innovation culture; ensuring enduring 
access to content; and building toward the horizon. (See Table 9, which maps our recommendations to the Library 

of Congress digital strategy.) 

Under this broad umbrella, we propose several more specific recommendations, through which we believe the 

Library of Congress could have the most immediate and most significant impact, drawing on both its status and 

position as well as existing areas of expertise. We have not attempted to be exhaustive in these recommendations; 

instead we emphasize activities that we consider critical or high priority given community needs, the Library’s 

existing expertise/leadership, and opportunity. To that end, we recommend that the Library of Congress should: 

§ Develop a statement of values or principles that will guide how the Library of Congress pursues the use, 

application, and development of machine learning for cultural heritage. 

 
21 Padilla has framed this need as a research agenda for libraries, including the areas of machine learning, data 

science, and artificial intelligence. See Padilla for an even more extensive list of needs. 
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§ Create and scope a machine learning roadmap for the Library that looks both internally to the Library of 

Congress and its needs and goals and externally to the larger cultural heritage and other research 

communities. 

§ Focus efforts on developing ground truth sets and benchmarking data and making these easily available. 

In the following subsections, we describe these recommendations in more detail. We also map each 

recommendation to areas of investigation and challenge areas outlined in Responsible Operations. (See Table 10, 

which maps each recommendation to areas of investigation and challenge areas outlined in Responsible Operations.) 

8.1.1 DEVELOP A STATEMENT OF VALUES OR PRINCIPLES THAT WILL GUIDE HOW THE LIBRARY OF CONGRESS 

PURSUES THE USE, APPLICATION, AND DEVELOPMENT OF MACHINE LEARNING FOR CULTURAL 

HERITAGE. 
The Library of Congress should articulate a statement of values or principles with regard to the adoption, use, and 

development of machine learning. Such a statement can address machine learning and cultural heritage broadly—

what is the vision of machine learning for cultural heritage that Library of Congress aspires to—and also frame the 

values and principles under which the Library of Congress will pursue the development and application of machine 

learning. If units within the Library seek to apply machine learning to collections, under what principles and values 

should that work proceed? What are the expectations around transparency and explainability, both for internal and 

external audiences, for example? Or around confronting problematic historical knowledge and knowledge structures 

in training data? The crafting of such a statement of values or principles is an opportunity for developing increased 

literacy and fluency around machine learning, if the Library engages its staff broadly in the developing and education 

around such a statement. 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Committing to Responsible Operations 

o Managing Bias 

o Transparency, Explainability, Accountability 

o Distributed Data Science Fluency 

8.1.2 CREATE AND SCOPE A MACHINE LEARNING ROADMAP FOR THE LIBRARY THAT LOOKS BOTH INTERNALLY 

TO THE LIBRARY OF CONGRESS AND ITS NEEDS AND GOALS AND EXTERNALLY TO CULTURAL HERITAGE 

AND OTHER COMMUNITIES OF RESEARCH AND PRACTICE. 
For this demonstration project, we scoped our explorations above as a response to the seemingly endless array of 

opportunities for applying machine learning to the Library of Congress’s digital collections. As the Library of Congress 

continues to explore the intersection of machine learning and digital cultural heritage, the Library likewise will need 

to focus and scope its efforts. Such scoping and an overall roadmap are necessary for the Library to influence and 

have a strong impact on the development of machine learning in cultural heritage organizations. 

The roadmap should be informed by the statement of values recommended in 4.1.1. In addition, other 

recommendations in this report may be points on that roadmap. The investigation areas in Responsible Operations 

may provide a useful framework for such a roadmap. What are the Library’s goals and objectives in each of the 

investigation areas? Will it pursue all of the areas or prioritize particular areas? With regard to the Library’s goals 

and objectives, are there investigations areas that the Library would add? Do recommendations from that report 

offer ways of thinking about and structuring a longer-term roadmap? 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 
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§ Committing to Responsible Operations 

o Transparency, Explainability, Accountability 

o Distributed Data Science Fluency 

§ Workforce Development 

o Investigating Core Competencies 

o Committing to Internal Talent 

§ Any/all of the investigation and challenge areas that the Library of Congress would choose to prioritize in 

its own roadmap and plan 

8.1.3 FOCUS EFFORTS ON DEVELOPING GROUND TRUTH SETS AND BENCHMARKING DATA AND MAKING THESE 

EASILY AVAILABLE. 
One key way for the Library of Congress to advance machine learning for cultural heritage is creating and distributing 

ground truth sets drawn from its diverse digital collections and making available benchmarking data for 

computational approaches on those sets. Ground truth data and benchmarks will allow researchers—including 

cultural heritage professionals, computer scientists, and developers—to focus their energies and research, 

development, and analysis, rather than on creating one-off, niche datasets. The availability of ground truth and 

benchmarks also create the possibility of more rapid development around particular problem domains.  

Creating and distributing ground truth sets will foreground the significance of metadata, including technical, 

structural, and descriptive. For descriptive metadata, we recommend distinguishing between at least two types of 

descriptive metadata, one that is descriptive of the content of the historical materials, including metadata about 

what is depicted and represented as well as how, and another that is descriptive of the properties of the image, 

including features such as digitization source, contrast, skew, noise, range effect, complexity (or a difficulty measure 

of some sort). Underscoring this idea is that the ground truth sets will have interest to researchers of many disciplines 

and research interests (those interested in the materials themselves as cultural objects and those interested in them 

for their value to computer science development, for example). 

Within this recommendation, we offer two sub-recommendations: 

8.1.3.1 DEVELOPMENT OF DOCUNET 
We recommend the Library of Congress develop, or partner in developing, DocuNet, an image database of 

historical documents with accompanying taxonomic and typological metadata. DocuNet would be valuable 

to researchers in library and related sectors and also to information science and computer science 

researchers. We see it as one effective way to encourage additional machine learning researchers and those 

interested in computer vision, among other domains, to delve into historical document analysis. Features 

or characteristics important to a DocuNet are ground-truth (e.g., document types, coordinates of article 

regions, etc.); openness; diversity and balance (e.g., different document types should be comprehensively 

covered and equally distributed); and clear objectives (e.g., segmentation, classification, clustering, etc.). 

8.1.3.2 PURSUIT OF LOW-COST GROUND-TRUTHING 
We also recommend that the Library explore options for, and contribute to efforts to advance, low-cost 

ground-truthing. Having subject matter experts hand-label data is expensive and is a barrier to machine 

learning, whether in the Library of Congress or on external research teams. Importantly, by low-cost 

ground-truthing, we do not mean exploitative labor such as through Mechanical Turk. Instead, the Library 

could pursue heuristics-based models. In this form of ground-truthing, computers learn the heuristics that 

are created by humans, and then computers label data using the heuristic rules, constraints, distributions, 
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and/or variances of the dataset. Such an approach may be less accurate than item-by-item expert-labeled 

ground truth, but it may still be able to produce effective machine learning systems. While the potential for 

low-cost ground-truthing of this sort remains to be seen, we believe it is a worthwhile area of inquiry as 

part of a larger commitment to support for machine learning infrastructure.  

Recommendation 4.2.3 and its corresponding sub-recommendations map to the following investigation areas and 

challenges in Responsible Operations: 

§ Committing to Responsible Operations 

o Managing Bias 

§ Description and Discovery 

o Enhancing Description at Scale 

§ Shared Methods and Data 

o Shared Development and Distribution of Training Data 

8.2 INVEST IN CONTINUED, ONGOING, INTENTIONAL EXPLORATIONS AND INVESTIGATIONS OF 

PARTICULAR MACHINE LEARNING APPLICATIONS TO ITS COLLECTIONS.  

Much as it did through this demonstration project and other activities (its Innovator-in-Residence program, for 

example), the Library should continue to invest in explorations and investigations of particular applications of 

machine learning on its collections, with an eye toward both internal operations and impacts on external users. 

Continued explorations, tests, and experiments will prove crucial to the ongoing inquiry needed to more fully 

evaluate the potential of machine learning for digital libraries. We recommend that such explorations are framed 

and understood as intellectual endeavors rather than being large output-driven and are collaborations among 

computer scientists, developers, and information professionals, drawing in other participants and stakeholders as 

appropriate to the project. We also encourage the Library of Congress to be careful in the presentation of machine 

learning generated data, particularly when that data might be read or experienced by others as uncontested 

knowledge or fact about cultural heritage materials, and also with care and concern about what is absent as well as 

what is present.  

This recommendation, that the Library invest in continued, ongoing, intentional explorations and investigations of 

particular machine learning applications to its collections, connects with many of the goals in the Library’s digital 

strategy. These include, in particular, supporting emerging styles of research, welcoming other voices; driving toward 
momentum in our communities; cultivating an innovation culture; and building toward the horizon. 

Again, we propose several more specific recommendations, through which we believe the Library of Congress could 

have the most immediate and most significant impact, drawing on both its status and position as well as existing 

areas of expertise. We have not attempted to be exhaustive in these recommendations; instead we emphasize 

activities that we consider critical or high priority given community needs, the Library’s existing expertise/leadership, 

and opportunity. To that end, we recommend that the Library of Congress should: 

§ Join the Library of Congress’s emergent efforts in machine learning with its existing expertise and leadership 

in crowdsourcing. Combine these areas as “informed crowdsourcing” as appropriate. 

§ Sponsor challenges for teams to create additional metadata for digital collections in the Library of Congress. 

As part of these challenges, require teams to engage across a range of social and technical questions and 

problem areas. 



 35 

§ Continue to create and support opportunities for researchers to partner in substantive ways with the 

Library of Congress on machine learning explorations. 

In the following subsections, we describe these recommendations in more detail. We also map each 

recommendation to areas of investigation and challenge areas outlined in Responsible Operations. 

8.2.1 JOIN THE LIBRARY OF CONGRESS’S EMERGENT EFFORTS IN MACHINE LEARNING WITH ITS EXISTING 

EXPERTISE AND LEADERSHIP IN CROWDSOURCING. COMBINE THESE AREAS AS “INFORMED 

CROWDSOURCING” AS APPROPRIATE. 
Through its By the People application and campaigns, as well as through earlier efforts, the Library of Congress has 

established a strong portfolio of crowdsourcing experience. Through the Library of Congress Labs, the Library also 

has strong leadership in crowdsourcing, including technical development for crowdsourcing, and in designing and 

developing challenges. We see significant potential in bringing together machine learning and crowdsourcing efforts, 

as an effort to combine an existing strength of the Library with an emergent area of interest and impact. Such a 

joining of efforts would allow the Library of Congress to make even greater use of crowdsourced information, toward 

challenges of scalability. Doing so also creates the opportunity for greater conceptual understanding and practical 

development. For example, joining these areas, even in a limited way, would allow the Library to research cross-

learning and looped learning. Such a combined approach has the potential to improve machine learning models, 

particularly in applications that require a higher-level of understanding. In a hypothetical project, members of the 

crowd might receive labeled data from a model; users then revise the labels, and the model improves its predictions 

based on those revisions. With each successive iteration, the model improves further. 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Description and Discovery 

o Enhancing Description at Scale 

§ Workforce Development 

o Committing to Internal Talent 

§ Shared Methods and Data 

o Shared Development and Distribution of Training Data 

8.2.2 SPONSOR CHALLENGES FOR TEAMS TO CREATE ADDITIONAL METADATA FOR DIGITAL COLLECTIONS IN 

THE LIBRARY OF CONGRESS THROUGH MACHINE LEARNING. AS PART OF THESE CHALLENGES, REQUIRE 

TEAMS TO ENGAGE ACROSS A RANGE OF SOCIAL AND TECHNICAL QUESTIONS AND PROBLEM AREAS. 
The Library has a history of creating and sponsoring challenges, such as the Congressional Data Challenge and 

challenges focused on Chronicling America data. We recommend that the Library build on this prior experience to 

organize and offer new sponsored challenge opportunities about machine-learning generated metadata. Such 

explorations have the potential to move forward a range of critical conversations and needs. The purpose of this 

recommendation is multipart: (1) To see what types of metadata researchers/teams might produce. What metadata 

is of interest to them? (2) To encourage the creation of particular types of metadata, including through an expanded 

sense of what descriptive metadata might include and what is of descriptive value (e.g., metadata that are 

representational of the content and metadata that are descriptive of features such as noisiness, quality, and so on); 

(3) To anchor critical engagement with core problems, such as of bias in the data and in what may be produced, as 

inseparable from technical development; and (4) To emphasize, underscore, and champion that cross-disciplinary, 

community-centered and community-engaged development is required for responsible machine learning.  
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This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Committing to Responsible Operations 

o Managing Bias 

o Transparency, Explainability, and Accountability 

§ Description and Discovery 

o Enhancing Description at Scale 

§ Shared Methods and Data 

o Shared Development and Distribution of Methods 

§ Sustaining Interprofessional and Interdisciplinary Collaboration 

8.2.3 CONTINUE TO CREATE AND SUPPORT OPPORTUNITIES FOR RESEARCHERS TO PARTNER IN SUBSTANTIVE 

WAYS WITH THE LIBRARY OF CONGRESS ON MACHINE LEARNING EXPLORATIONS. 
Even if the Library were able to dedicate many staff members to a full-time focus on machine learning, the challenges 

of machine learning for cultural heritage are large and significant enough that the Library will need to continue its 

collaborations with external researchers. Such opportunities need not be sponsored by the Library itself, though 

they could be. However they are facilitated, we recommend that the Library see formal collaborations as central to 

taking this machine learning work forward. As researchers who have worked with Library of Congress data for many 

years—and over which time we have had many positive and helpful interactions with Library staff, who probably 

went well beyond the call of duty in their help to us—we benefitted in significant ways from the additional levels of 

access to Library staff this this particular demonstration project and the formal collaboration afforded. 

Understandably, the Library cannot support every machine learning endeavor at this level or engage with every 

research team in this way, and there will be challenges of scale. Nonetheless, we recommend that some measure 

and shape of formal collaboration opportunities be part of the Library’s support for both machine learning 

explorations and larger social and technical infrastructures. 

This recommendation maps to the following investigation areas and challenges in Responsible Operations: 

§ Shared Methods and Data 

o Shared Development and Distribution of Methods 

§ Sustaining Interprofessional and Interdisciplinary Collaboration 
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TABLE 9. INFRASTRUCTURE AND APPLICATION RECOMMENDATIONS MAPPED TO ELEMENTS OF THE LIBRARY OF CONGRESS'S DIGITAL 
STRATEGY. 

Digital Strategies Recommendations on Infrastructure Recommendations on ML 
Applications 

maximizing use of content ü  
 

supporting emerging styles of research ü  ü  

welcoming other voices ü  ü  

driving momentum in our communities ü  ü  

cultivating an innovation culture ü  ü  

ensuring enduring access to content ü  
 

building toward the horizon ü  ü  
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TABLE 10. RECOMMENDATIONS MAPPED TO AREAS OF INVESTIGATION AND CHALLENGE AREAS OUTLINED IN PADILLA'S RESPONSIBLE 
OPERATIONS. 

Strategies Sub-Strategies Statement 
of Vision 

Roadmap 
of ML 

Ground-
Truthing & 
Benchmarking 

ML + 
Crowd-
sourcing 
Efforts 

Sponsoring 
Challenges 

Research 
Partnerships 

Committing to 
Responsible 
Operations 

Managing Bias ü   ü   ü   
 

ü   
 

Transparency, 
Explainability, 

Accountability 

ü  ü  
  

ü  
 

Distributed Data 

Science Fluency 

ü  ü  
  

  
 

Workforce 
Development 

Investigating 
Core 

Competencies 

 
ü  

 
ü  

  

Committing to 

Internal Talent 

 
ü  

    

Description & 
Discovery 

Enhancing 

Description at 

Scale 

  
ü  ü  ü  

 

Shared 
Methods and 
Data 

Shared 

Development 
and Distribution 

of Training Data 

  
ü  ü      

Shared 
Development 

and Distribution 
of Methods 

    
ü ü 

Sustaining Interprofessional & 
Interdisciplinary Collaboration 

    
ü  ü  
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9 CONCLUSION 
There is rich potential for machine learning to augment the description and accessibility of materials in the Library 

of Congress, to inform understanding of collections and choices about how materials are processed and by whom, 

and to address issues of scale. The Library of Congress is in a remarkable position to advance machine learning for 

cultural heritage organizations, through its size, the diversity of its collections, and its commitment to digital strategy. 

This demonstration project—via its explorations, discussion, and recommendations—has shown the potential of 

machine learning toward a variety of goals and use cases, and it has argued that the technology itself will not be the 

hardest part of this work. The hardest part will be the myriad challenges to undertaking this work in ways that are 

socially and culturally responsible, while also upholding responsibility to make the Library’s materials available in 

timely and accessible ways.  
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Progress report 
Yi Liu 

Current Stage 
Beyond Words collection encourages users to fix segmentation issue, classify categories of snippets, and 
transcribe caption of graphic images on newspaper pages. This process fits our first proposed project. 
Hence, in the first stage, we want to extract graphic content from newspaper pages based on classified 
data on Beyond Words. And metadata can be generated based on the retrieved corpus. According to 
downloaded data on Beyond Words, there are approximately 1,500 pages can be used as ground truth for 
training. However, there are several issues. First, there are missed graphic snippets on newspaper pages. 
For example, there are pages of which only one out of three graphic snippets are classified in the 
downloaded ground truth. The category and transcription information of rest two graphic snippets are 
missing. Second, the segmentation of the snippet uses a simple rectangle, which causes inaccuracy of 
segment information. For example, two-segment regions are overlapping because the shape of the 
graphic snippet is not rectangle-shaped. At this stage, we plan to ignore these issues for now. Further 
attempts will be applied after observation of the reaction of the model to the ground truth extracted from 
Beyond Words.  

 

Figure 1 Network architecture of dhSegment 

State-of-Art 
dhSegment [Sofia et al. 2018] showed a promising result on a segmentation task for European newspapers 
using a Fully Convolution Network (FCN). dhSegment builds the FCN, shown in Figure 1, by combining 
ResNet-50 [He et al. 2015] and U-Net [Ronneberger et al. 2015] models. In addition, the dhSegment was 
not trained from scratch. The encoder part (ResNet-50) of dhSegment classifier was transfer learned from 
the pre-trained Resnet-50 model for ImageNet. In the implementation detail of dhSegment, there were 
three differences compare to original ResNet, shown in Figure 2, and U-Net, shown in Figure 3. First, 
comparing to original ResNet, dhSegment added one convolutional layer after the third residual block and 
the fourth residual block, shown in red rectangles in Figure 1. The purpose of the change was to decrease 
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the number of parameters and reduce memory usage. Second, comparing to original U-Net, dhSegment 
used only one 3x3 convolutional layer in each deconvolution stage, shown in blue rectangles in Figure 1 
and 3, while the original U-Net used two 3x3 convolutional layers in each deconvolution stage. This change 
could result in a faster training speed since numbers of parameters were reduced. However, there was no 
detailed justification in [Sofia et al. 2018]. Third, ResNet had one more convolution stage than U-Net. 
Hence, there was an additional bridged deconvolution stage in dhSegment, shown in a green rectangle in 
Figure 1. 

 

Figure 2 Network architecture of ResNet 

 

Figure 3 Network architecture of U-Net 

ResNeXt [Xie et al. 2017] is the current state-of-art in ImageNet competition. Comparing to ResNet, 
ResNext used grouped convolution (i.e. side-by-side convolution layers) in each residual block, shown in 
Figure 4. The usage of grouped convolution was first mentioned in AlexNet [Krizhevsky et al. 2012]. The 
creation of the grouped convolution was for training models on multiple processor cores. By applying 
grouped convolution in residual blocks, ResNext showed there were improvements on ImageNet dataset, 
shown in Figure, 5. 

EAST [Zhou et al. 2017] is a text detection approach for scene images. EAST combined HyperNet [Kong 
2016] and U-Net to detect accurate text region in scene images. In addition, EAST is a text orientation 
agnostic approach, meaning East can detect tilted text regions. Further, scene images such as the 
photograph, are considered graphic images. In Beyond Words collection, figures/illustrations are snippets 
of a graphic region. Hence, EAST text detection applies to Beyond Words collection to extract texts in the 
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figure/illustration. An example, in Figure 6, showed the performance of EAST on one image from Beyond 
Words collection. 

HyperNet is originally proposed for object detection. First, it inherited pre-trained AlexNet to extract 
feature maps. Second, a region-of-interest (ROI) pooling was applied to localize object. Third, a region 
refinement was applied to refine ROI. And, finally, two consecutive fully connected layers were applied to 
classify ROI found previously. 

 

Figure 4 (Left) Residual blocks of ResNet. (Right) Residual blocks of ResNext. 

  
Figure 5 Comparative results between ResNet and ResNeXt on ImageNet-1K dataset. 

 

Figure 6 EAST text detection on Beyond Words snippet. Blue rectangles indicate detected text regions. 
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Proposing Approach 
A two-step approach is proposed at this stage. The first step, an FCN (U-NeXt) combining ResNeXt and U-
Net will be built and trained to segment and classify graphic snippets on newspaper pages based on 
ground truth extracted from Beyond Words. Besides, the training of the FCN will be based on pre-trained 
ResNeXt model for ImageNet to reduce training parameters. Based on dhSegment, using transfer learning 
is able to boost training effectiveness, and preserve a good performance. The second step, a text 
segmentation, and recognition model will be built to retrieve textual content in the graphic snippets (i.e. 
extracted graphic snippets from the first step). Hence, EAST text detection will be applied to find text 
regions for an OCR process to retrieve words within graphic snippets. Finally, retrieved words will be 
encoded into metadata for further usages, such as search queries. 

Current Progress 
The implementation of the U-NeXt uses MXNet framework has been finished and tested. Currently, a 
transfer learning process is constructing for further test. The model architecture graph is shown in 
Appendix I.  

The model is training on HCC (UNL resource) server for now. If the AWS in the Library of Congress became 
a preferred process location, we can move on to the AWS later. 

Potential Problem 
The major concern is the quality of the ground truth from Beyond Words. We noticed some graphic 
snippets appeared on the page are missing in the ground truth. Since machine learning models will try to 
find all graphic content within the input page. Such missing graphic snippets can confuse the model during 
the training process. Hence, data from Beyond Words may not be able to use directly as training data 
before fixing of the quality issue. We may try to use an existing European newspaper collection to train 
the model, then use Beyond Words data for fine-tuning. 

Reference 
[1] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on 
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International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. 
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Appendix I 
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Progress Report 
 

07/31/2019 
Mike Pack 

 

Background 
 
Based on the discussion in the kick-off meeting, there are two main tasks I am currently working on: 

1. Page segmentation: Aims to identify image-like components—such as cartoons, illustrations, 
photographs, and maps—from Chronicling America corpus. 

a. dhSegment is known to be the state-of-the-art page segmentation algorithm in literature 
(https://arxiv.org/abs/1804.10371) 

b. The concept of this model is to combine two deep learning models—ResNet-50 and U-
net—which are known to be the best model for image classification and pixelwise-
classification problem. 

c. Open-source code is provided by the author in GitHub (https://github.com/dhlab-
epfl/dhSegment) 

2. Metadata generation: Explore various approaches to find what will be the best way to build a 
well-structured metadata for image-like components. 
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Discussion of achievements 
 
1. Page segmentation 

1.1. As a pilot experiment, we were able to train dhSegment using a small subset (30 images) of 
European Historical Newspaper Dataset (ENP); and obtained a promising result (Please see 
Figure 1). 

1.1.1.  We have also confirmed that the model trained on ENP dataset is also capable of separating 
images from Chronicling America corpus into background, text, and figure sub-regions 
(Please see Figure 2).  

1.2. We have explored the Beyond Words JSON data to analyze and construct a well-formed 
ground-truth set for training the model. 

1.2.1.  A script is implemented. This script converts a single JSON file into a number of XML 
files equal to the number of actual newspaper pages presented in the JSON file. Note that 
we are using XML format the PAGE XML format is known to be a standard format for  
newspaper segmentation competition 
(https://www.primaresearch.org/tools/PAGELibraries). 

1.3. We have confirmed that the training result of the model trained on the Beyond Words dataset is 
not promising enough compared to the model trained on ENP dataset.  

1.3.1.  More detailed discussion about this result is described in the following “Discussion of 
problems” section. 

 
 
2. Metadata-generation 

2.1. I have not started on this task yet, however, I have shared one idea in our shared folder 
(https://docs.google.com/document/d/1H0oIUh76_QXslCs_PPvf0lV56zJUot3tza0LjfKdG9U/edi
t). 
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Discussion of problems 
 
There are three following main concerns in Beyond Words ground-truth dataset that might cause a model 
to be hindrance during the training: 
 
1. Inconsistency 

1.1. Not all figure entities presented in a page are annotated. More detailed information is described 
in Figure 3. 

2. Imprecision 
2.1. Most of the time, a simple rectangle annotation contains regions that are not relevant to the 

corresponding class. More detailed information is described in Figure 4. 
3. Data imbalance 

3.1. In the JSON file, the class of most of the figure entities is “Photograph.” With the imbalanced 
dataset, a model can be biased to learn a set of features relevant to the majority class during the 
training. More detailed information is described in Figure 5. 

 
 
 
 
 
 

Discussion of work that lies ahead 
 
1. Segmentation 

1.1. Training model with Beyond Words dataset to address data imbalance problem 
1.2. Training model with enlarged ENP dataset 

2. Meta-data generation 
2.1. Explore techniques to generate meta-data relevant to image quality 
2.2. Explore techniques to generate meta-data relevant to image context 
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Figures 

 
Figure 1. Visual inspection on the segmentation result of model trained on ENP dataset. Clockwise from 
top-left: (1) Input, (2) ground-truth, (3) probability map, and (4) prediction. In ground-truth, each pixel is 
labeled as following: (1) black=background, (2) green=text, and (3) red=figure. The probability map here 

shows the model’s pixel-wise prediction value, for example each pixel will have a list of probability 
values, such as [background:0.2, text:0.7, figure:0.1]. The prediction map is a thresholded result from the 
probability map, using the arguments of the maxima (i.e., argmax), for example, argmax[background:0.2, 
text:0.7, figure:0.1]= text:0.7. The color representation of the probability map is the same as the ground-

truth.  
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Figure 2. Visual inspection on the segmentation result of model trained on ENP dataset. Note the image 

shown here is from the Chronicling America corpus, which is never shown to the model during the 
training. Clockwise from top-left: (1) Input, (2) background-map, (3) image-map, and (4) text-map. In 

each map, brighter (yellow-ish) region indicates the region of interest with high probability. 
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Figure 3. Visual inspection on the segmentation result of model trained on Beyond Words dataset. 

Clockwise from top-left: (1) Input, (2) ground-truth, and (3) prediction. Note here that model makes a 
reasonable guess that there are multiple figure-like regions in a given page, but the inaccurate ground-

truth missing some figure-like regions penalize the model’s prediction, which is problematic since it will 
confuse the model to learn a set of useful features. 
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Figure 4. From left to right: (1) ground-truth (yellow: Photograph and black: background) and (2) original 

image. Note here that in the ground-truth, non-photograph-like (e.g., texts) components are included 
within the yellow rectangle region. The best-case scenario is to have a more accurate annotation with 

polygon so that each ground-truth entity can contain only photograph-like pixels.  
 
 
 

 
Figure 5. Number of entities in the Beyond Words JSON file. Note here that the dataset is overwhelmed 

with photograph class (4%, 11%, 18%, 65%, and 1%).  
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Progress Report 
 

08/05/2019 
Mike Pack 

 

Background 
 

1. Page segmentation: Aims to identify image-like components—such as cartoons, illustrations, 
photographs, and maps—from Chronicling America corpus by using state-of-the-art deep 
learning model. 

2. Metadata generation: Aims to build a metadata generator for image-like components. 
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Discussion of achievements 
 
1. Page segmentation 

1.1. Using different training configurations, different models are trained using two datasets: (1) 
Beyond Words and (2) European historical NewsPapers. 

 

Model 
train/eval 

size 
Classes 

Weighted 
training 

Pre-processing 
(Normalization) 

Best Score 
Accuracy mIoU 

BW_1500_v1 
1226/306 

0: Background 
1: Editorial 

cartoon 
2: Comics/cartoon 

3: Illustration 
4: Photograph 

5: Map 

No 
No 

0.87 0.24 

BW_1500_v2 
Yes 

[10;22;20;18;8;22] 
0.88 0.26 

ENP_500_v1 

385/96 

0: Background 
1: Text 

2: Figure 
3: Separator 

4: Table 

Yes 
[5;10;40;10;35] 

No 0.88 0.64 
ENP_500_v2 Yes 0.89 0.64 
ENP_500_v3 

No 
No 0.91 0.69 

ENP_500_v4 Yes 0.91 0.69 
*Accuracy: Pixel-wise accuracy. 

*mIoU: Average intersection over union. 
*Normalization: Zero mean unit variance 

 

1.2. Note that models trained with ENP dataset show better segmentation performance than with 
BW dataset in both accuracy and mIoU. 

1.2.1.  High accuracy of BW_1500_v1 and v2 is not a surprising result. Since most of each image 
has only a few regions of interest, so from a model’s point of view, assuming and predicting 
most of pixels to be a background is guaranteed to obtain high accuracy. The models’ this 
sort of behavior can be verified based on their poor performance on mIoU metric, which 
quantifies the percent overlap between the target class and model’s prediction.  

1.2.2.  On contrast, high accuracy of from ENP_500_v1 to v5 is a meaningful result. Since text 
regions are included in the ground-truth, and thus a model’s simple guessing that everything 
is background will get penalized. Also, we can see relatively high mIoU measures. 

1.3. Note that pre-processing does not play a significant role in improving segmentation 
performance. 

1.4. Note that weighted training causes a performance degradation. 
1.5. Post-processing has been implemented 

1.5.1.  Eliminate small regions 
1.5.2.  Draw bounding-box or polygon 

1.6. Actual testing on some Chronicling America images are shown in Figure 1 to 4. 
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2. Metadata-generation 
2.1. Approach 1: Google Cloud Platform (GCP) Vision API 

2.1.1.  GCP Vision API provides a set of pre-trained machine learning models that can assign 
labels to images and quickly classify them into a number of predefined categories. For 
example, we can utilize their (1) object detection, (2) face recognition, (3) read printed and 
handwritten text, (4) similar image recommendation, or (5) basic image property generation 
(e.g., color space). 

2.1.2.  For the visual demonstration, see Figure 5. 
2.2. Approach 2: Explore Automatic Image Annotation (AIA) research field and find the best model 

that fits our dataset. 
2.2.1.  Since my work has mainly focused on page segmentation and GCP Vision API last week, I 

need more time to work on this. 
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Discussion of problems 
 
1. Page segmentation 

1.1. As can be seen in Figure 2 to 4, there are some false-positive and false-negative results. 
1.1.1.  We might improve the performance of our model with (1) more advanced data 

augmentation, (2) enlarged data set, (3) hyperparameter tuning, and (4) modifying 
architecture. 

2. Meta-data generation 
2.1. Approach 1: GCP Vision API 

2.1.1.  One thing in my mind is that the resultant metadata would be not that useful or end up with 
just entertaining result as my previous sentence generation idea. Since most of figures in 
newspapers are people, so most of the time, the GCP Vision API will label images to 
“person” or “people” as shown in Figure 5. 

2.1.2.  For a large-scale data, there is a monthly usage. 
 
 
 
 
 
 
 
 
 

Discussion of work that lies ahead 
 
1. Segmentation 

1.1. Training model with Beyond Words dataset to address data imbalance problem 
1.2. Training model with enlarged ENP dataset 
1.3. Data augmentation 
1.4. Hyperparameter tuning 

2. Meta-data generation 
2.1. Explore techniques to generate meta-data relevant to image quality 
2.2. Explore techniques to generate meta-data relevant to image context 
2.3. Explore state-of-the-art methods in AIA field 
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Figures 
 

 
Figure 1. Segmentation result of ENP_500_v4 on Chronicling America image (sn92053240-19190805.jpg). Clockwise from top-
left: (1) Input, (2) probability map for figure class, (3) detected figures in polygon, and (4) detected figures in bounding-box. In 

the probability map, pixels with higher probability to belong to figure class are shown with brighter color.  
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Figure 2. Segmentation result of ENP_500_v4 on Chronicling America image (ndnp-jpeg-

surrogates_deu_descendo_ver01_data_sn84026820_00271765095_1917050501_0153.jpg). Clockwise from top-left: (1) Input, 
(2) probability map for figure class, (3) detected figures in polygon, and (4) detected figures in bounding-box. In the probability 

map, pixels with higher probability to belong to figure class are shown with brighter color. 
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Figure 3. Segmentation result of ENP_500_v4 on Chronicling America image (ndnp-jpeg-

surrogates_ct_berlin_ver01_data_sn82014086_00295866135_1917091301_0116.jpg). Clockwise from top-left: (1) Input, (2) 
probability map for figure class, (3) detected figures in polygon, and (4) detected figures in bounding-box. In the probability map, 

pixels with higher probability to belong to figure class are shown with brighter color. 
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Figure 4. Segmentation result of ENP_500_v4 on Chronicling America image (sn86063952-19190805.jpg). Clockwise from top-
left: (1) Input, (2) probability map for figure class, (3) detected figures in polygon, and (4) detected figures in bounding-box. In 

the probability map, pixels with higher probability to belong to figure class are shown with brighter color. 
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Figure 5. GCP Vision API demonstration on test image from Beyond Words 

(http://beyondwords.labs.loc.gov/#/view/5aa47eff639da00001002159). Top-left: Result of object detection. Note that two objects 
(i.e., two people) are detected and marked with green bounding-boxes. Top-right: Result of label assignment. Middle-left: A list 
of relevant keywords. Middle-right: Result of text recognition. Note that text blocks are marked with green bonding-boxes and 

words are marked with orange line. Bottom-left: A list of basic property of image (e.g., color and size). Bottom-right: Estimation 
of the likelihood that given image includes adult content, violence, and etc. 
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Progress report – Document image quality 
assessment for digital library collections 

Yi Liu 

Background 
To better access digital library collections in terms of improving searchability, often document images—

e.g., digitized or scanned from their original paper versions or microfilms—are tagged with metadata.  

Typically, metadata comes in two forms: (1) metadata about the document such as the original date of 

the document, publication venue, and so forth—also known as ancillary data in the realm of image 

processing; and (2) metadata about the texts directly discerned from the document, either through 

manual processing or natural language processing, such as keywords found in the texts, or titles extracted 

from the texts.  However, as researchers begin to process large quantities of document images to develop 

robust classifiers or to develop generalizable automated systems, there is an increasing need for a third 

form of metadata: (3) metadata about the image quality of the document images such as average intensity 

of an image, contrast, range effects, layout structure, etc., such that researchers could query and retrieve 

specific subsets of document images based on these qualities for testing.  It is this third form of metadata 

that motivates this report on document image quality assessment for digital library collections. 

In general, image quality assessment includes both machine and human perceptions of quality of an 

image. For machine perception, quality assessment evaluates difficulties to predict or categorize an image 

for a machine. And for human perception, quality assessment evaluates difficulties to understand and 

interpret an image based on the visual appearance for human.  In this report, our focus is document 

images.  

In document image quality assessment (DIQA), there are two types of quality metrics [Ye and Doermann 

2013]. One is called the objective quality metrics that is based on the ability to accurately predict the 

quality of a document image. For example, an optical character recognition (OCR) accuracy prediction 

model based on a convolutional neural network (CNN) [Kang et al. 2014] predicts the accuracy of OCR 

outcome for the document image. The other one is called the subjective quality metrics that define 

document image quality with respect to human perception. For example, a rating-based method assigns 

a categorical label to each image, such as the mean opinion score (MOS). 

Problem Definition with respect to the Chronicling America’s Repository 
The Chronicling America repository (including Beyond Words and By the People) has little information on 

the document image quality. Note that there is an OCR accuracy quality score provided in the 

corresponding “ocr.xml” file. However, the score is not provided for all pages. Only some of the document 

pages have the corresponding score within its XML file. In addition, the score shows an objective score for 

OCR accuracy. It cannot intuitively indicate the quality of the image for human perception. Hence, a 

subjective score system is required to provide more quality information on human perception for further 

usage. For example, a school teacher might want to find some documents for his or her classroom 

activities. Intuitively, s/he might want document images with a clean background, good contrast, and less 
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content density. With a MOS system, the search query could be as easy as searching for document images 

with a good background, high contrast, and low density metadata. 

State-of-the-Art 
[Kang et al. 2014] proposed a shallow CNN model to predict the OCR accuracy for document images. The 

proposed model is shown in Figure 1. Further, they proposed to use a parallel min-max pooling before the 

dense layer. Such min-max pooling was able to maintain filter responses characterized by max and min 

values to capture statistical quality information for final score prediction.  

 

Figure 1 CNN model in [Kang et al. 2014] for OCR accuracy prediction. 

MOS is widely used for subjective quality assessment [Ye and Doermann 2013]. However, there are 

challenges for subjective quality assessment. First, there is no existing human perception-based DIQA 

database to perform related experiments. Second, degradations could be present at different document 

levels, such as the character-level, the article-level, or the page-level. The appearance of multiple 

degradations increases the level of difficulty to design a global measurement. Third, a subjective quality 

assessment could be task-specific and might not be generalizable, as different tasks could command 

different values or emphases on how the quality of an image is judged or assessed. 

Proposed Approach 
Dataset Construction 
Machine Learning, especially for deep learning, could require large amounts of labeled data to perform 

training. However, the lack of human perception-based DIQA database presents a challenge to 

investigations. We suggest adding an interface to allow a user to describe the quality of the document 
images using five-level rating score, such as MOS (i.e., 5-Excellent, 4-Good, 3-Fair, 2-Poor, and 1-Bad), 
on aspects such as contrast, range-effect, background-cleanness, and content density. Over time, a 

human perception based DIQA database could be established to support studies and experiments, and 

could even be made publicly available for research competition for academia. 

Integrating Existing Work 
In the work of Image Analysis for Archival Discovery (Aida), an objective DIQA experiment was carried out 

to evaluate historical newspapers pages from 1834 to 1922 in the Chronicling America repository. The 
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objective DIQA aimed to evaluate four metrics for the newspaper page across different languages in 

different eras. These four metrics that could be automatically computed included (1) the skewness, (2) 

the contrast, (3) the range-effect, and (4) the bleed-though (Examples are shown in Appendix).  The results 

of the experiment were numeric scores ranging based on algorithmically understanding. As these metrics 

were numeric, it would require human expertise to better interpret the results such as the range of values 

for an image to be considered of high contrast or low contrast.  Furthermore, it would require application-

specific needs to leverage these metrics; for example, how high the range-effect would have to be for an 

image to be rendered not usable or interpretable for a particular application such as natural language 

processing?  

However, this is not necessarily suggesting the existing work is useless for subjective DIQA. With additional 

works, the existing objective DIQA results of Aida could be helpful. These works include: (1) pre-defining 

the range of the score that makes sense to human users; e.g., numerical scores on range-effect within 0 

to 1 may be considered excellent, within 1 to 2 good, within 3 to 5 fair, within 5 to 6 poor, and finally, 

larger than 6 bad; and (2) normalizing numeric scores based on the pre-defined range for each metric for 

subjective DIQA experiments. 

Deep Learning-Based Experiment 
We propose an inference multi-output U-NeXt to perform a subjective DIQA using MOS. The main 

architecture of the model is a combination of ResNeXt [Xie et al. 2017] and U-Net [Ronneberger et al. 

2015] that is attached by a min-max pooling and two dense layers, shown in Figure 2. Each output 

corresponds to one aspect of a five-level MOS. Note that the U-NeXt model will not be trained from 

scratch. A pre-trained model using ImageNet [Russakovsky et al. 2015] and ENP [Clausner et al. 2015] 

database will be adopted. By using transfer learning, a pre-trained model can help us to reduce numbers 

of training parameters and to make the training process faster.  

In the current stage, we could perform experiments based on the normalized objective DIQA scores from 

the project Aida. Hence, for each newspaper page from 1834 to 1922 in the Chronicling America’s 

repository, four quality metrics are included in the ground-truth on the skewness, contrast, range-effect, 

and bleed-through using MOS. Then, based on the ground-truth and data, we can train the U-NeXt model 

to rate the newspaper page subjectively using MOS. Such configuration would be able to show the 

strength of the model on subjective DIQA tasks. However, because the subjective score is a pseudo-score 

based on algorithmic score, they are not necessarily able to accurately represent the actual human 

perception. Hence, further experiments to evaluate the effectiveness of the subjective DIQA using the U-

NeXt requires an actual human perception-based DIQA database would be helpful. 

Reference 
[1] Clausner, C., Papadopoulos, C., Pletschacher, S., & Antonacopoulos, A. (2015, August). The ENP image and ground truth dataset of 

historical newspapers. In 2015 13th International Conference on Document Analysis and Recognition (ICDAR) (pp. 931-935). IEEE. 

[2] Kang, L., Ye, P., Li, Y., & Doermann, D. (2014, October). A deep learning approach to document image quality assessment. In 2014 IEEE 
International Conference on Image Processing (ICIP) (pp. 2570-2574). IEEE. 

[3] Ronneberger, O., Fischer, P., & Brox, T. (2015, October). U-net: Convolutional networks for biomedical image segmentation. In 

International Conference on Medical image computing and computer-assisted intervention (pp. 234-241). Springer, Cham. 

[4] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... & Berg, A. C. (2015). Imagenet large scale visual recognition 

challenge. International journal of computer vision, 115(3), 211-252. 

[5] Xie, S., Girshick, R., Dollár, P., Tu, Z., & He, K. (2017). Aggregated residual transformations for deep neural networks. In Proceedings of 
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[6] Ye, P., & Doermann, D. (2013, August). Document image quality assessment: A brief survey. In 2013 12th International Conference on 
Document Analysis and Recognition (pp. 723-727). IEEE. 
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Figure 2 Inference multi-output U-NeXt model for subject DIQA. 
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Appendix 
Table 1 Examples of newspaper pages having different levels of contrast, range-effect, and bleed-through. 
 High/Severe Some Low/None 

Value Image Value Image Value Image 

Contrast 146.08 

 

1834-

1922FullPages_20PerYr/1868_English/sn8

2014064/1868-07-18/ed-1/seq-4.jp2 

55.2 

 

1834-

1922FullPages_20PerYr/1848_English/sn

83035366/1848-03-16/ed-1/seq-1.jp2 

3.11 

 

1834-

1922FullPages_20PerYr/1898_German/

sn83045081/1898-12-29/ed-1/seq-

2.jp2 

Range-
effect 14.11 

 

1834-

1922FullPages_20PerYr/1896_English/sn8

8083938/1896-04-18/ed-1/seq-1.jp2 

4.0 

 

1834-

1922FullPages_20PerYr/1867_Spanish/20

13201074/1867-02-09/ed-1/seq-4.jp2 

0.0 

 

1834-

1922FullPages_20PerYr/1904_Icelandic

/sn90060662/1904-12-01/ed-1/seq-

12.jp2 

Bleed-
through 0.129 

 

1834-

1922FullPages_20PerYr/1861_Spanish/20

13201074/1861-03-16/ed-1/seq-4.jp2 

0.033 

 

1834-

1922FullPages_20PerYr/1856_English/sn

85026050/1856-08-15/ed-1/seq-4.jp2 

0.001 

 

1834-

1922FullPages_20PerYr/1907_Icelandic

/sn90060662/1907-09-01/ed-1/seq-

6.jp2 
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Table 2 Examples of newspaper pages having different levels of skewness. 
Skewness 

Title Value Image Note 

/Archive/sn83016788_1840-05-

26_ed-1_seq-2.jpg 
0.0 

 

No skewness 

/Archive/sn83016788_1840-07-

17_ed-1_seq-1.jpg 
-0.5 

 

Slightly tilting to left 

/Archive/sn85025180_1837-10-

14_ed-1_seq-1.jpg 
0.5 

 

Slightly tilting to right 

/Archive/2013201074_1837-05-

16_ed-1_seq-3.jpg 
0.75 

 

Slightly tilting to right 
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/Archive/2013201074_1837-01-

24_ed-1_seq-3.jpg 
-1.0 

 

More tilting to left 

/Archive/sn84026897_1838-09-

27_ed-1_seq-1.jpg 
1.0 

 

More tilting to right 

/Archive/sn84026897_1838-09-

20_ed-1_seq-1.jpg 
1.0 

 

More tilting to right 

/Archive/sn84026897_1840-05-

28_ed-1_seq-3.jpg 
2.0 

 

More tilting to right 
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Progress Report – Document image classification for digital 
library collections 

 
08/13/2019 
Mike Pack 

 

Background 
Document image classification aims to classify a type of given document image into a certain category—
email, letter, handwritten, etc.—based on its layout and visual structure. A successful document image 
classification can breakdown and categorize a large-scale digital document repository into a smaller subset, 
which is beneficial for maintenance, discoverability, etc.  
 
The main challenge of document image classification arises from the fact that within each document type, 
there exists a wide range of visual variability, as shown in Figure 1. Another issue is that documents of 
different categories often have substantial visual similarities, as shown in Figure 2.  
 

 
Figure 1. Examples of document images that show a wide range of visual variability within the same type (i.e., a 
letter type in this particular example). Note that no two documents show the exact same spatial arrangement of 

header, date, address, body, and signature; some of the documents even omit these components entirely.  
 

 
Figure 2. Examples of document images that show visual similarities across different types (Left: form, right: 

scientific publication) Note that two different types of documents share similar spatial arrangement of title and body. 
Even the amount of contents, so-called density, is also similar.    

 
In the past few years, using a deep convolutional neural network (CNN) to classify images has shown to be 
able to achieves substantially successful classification performances in various domain, such as natural 
image classification, natural image segmentation, etc. Inspired by the success of CNNs in other domains, 
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we would like to propose using the current state-of-the-art CNN model for document image classification 
problem. 
 

State-of-the-Art 
In this section, two papers, which used CNN for document image classification, are briefly reviewed. It is 
worth noting that all three papers used the same dataset, Ryerson Vision Lab Complex Document 
Information Processing (RVL_CDIP)1 [1], and they achieved similar performance, around 90%.  
 
Harley et al. (2015) investigated whether the features extracted from natural images (i.e., ImageNet) are 
general enough to be applied to document images [1]. The author also proposed a region-based CNN model, 
which consists of 5 different CNNs where each CNN is designed to be trained on particular regions: (1) 
holistic, (2) header, (3) footer, (4) left-body, and (4) right-body. Each of those CNN is VGG-16 [2] pre-
trained on ImageNet. The dimension of each feature vector extracted from the corresponding CNN is 
reduced using principal component analysis, and they are concatenated into a single vector for the 
classification. 
 
There are two interesting findings from their experimental result. First, the features extracted from a CNN 
trained on ImageNet are powerful enough to be used for document image classification task that achieves 
approximately as well as a model fine-tuned on a subset of RVL_CDIP, so-called SmallTobacco, 87.8% 
and 89.8%, respectively. There are two key implications from this finding. First, what the machine 
considers as distinctive features in natural images are also distinctive features in document images. Second, 
since we can easily transfer the knowledge (i.e., a set of filters capable of extracting distinctive features 
from an image) from one model to the other, we do not need to train our own model from scratch, which 
would allow us to reduce a significant amount of training time. Second, given sufficient training data, 
enforcing region-specific feature-learning is unnecessary; a single CNN trained on entire images 
performed approximately as well as an ensemble of CNNs trained on specific subregions of document 
images, 89.8% and 89.3%, respectively. This finding indicates that in the task of document classification, 
feeding large amount of data is more important than feeding fine-grained region-dependent representations. 
This result suggests that putting more efforts on collecting a larger amount of training dataset is more 
important than redesign a model’s architecture for capturing a region-specific representation in the 
document classification. 
 
Muhammad et al. (2017) investigated recent deep CNN architectures (i.e., AlexNet, VGG, GoogLeNet, and 
ResNet) and strategies for the task of document image classification [3]. Also, the author investigated the 
impact of transfer learning from a huge set of document images (i.e., RVL_CDIP). The outcome of this 
study can be summarized in two points as following: (1) VGG-16 performs slightly better than other 
networks by a small margin of 1-2%, and (2) with regards to the impact of transfer learning, all CNNs pre-
trained on RVL_CDIP achieve higher accuracy than both ImageNet and random initialization (i.e., no 
transfer learning). The first outcome implies that there are no significant performance differences between 
recent CNN models, which allows one to use a computationally cost-effective model for practical 
deployment—if that is a concern. The second outcome is not a surprising result, which aligns with [1] in 

 
1 This dataset consists of 400,000 labeled document grayscale images from 16 classes. The images are sized, so their largest 
dimension does not exceed 1000 pixels. 
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that a model pre-trained on ImageNet outperforms a model trained from scratch. Overall, the key 
implication from this research is that using one of recent CNN model pre-trained on RVL_CDIP is a suitable 
preset for building our own document classification model.  
 

Proposed Approach 
As a first experiment for the task of document image classification, our goal is to build a model capable of 
distinguishing three different types of documents: (1) handwritten, (2) typed/machine-printed, and (3) 
mixed (both handwritten and typed). To this end, we propose to use a VGG-16 pre-trained on RVL_CDIP 
for the task of document image classification based on the two following findings: (1) a simple deep CNN 
architecture, especially VGG-16,  showed better performance in the task of document classification than an 
ensemble model [1][3], and (2) a model pre-trained on RVL_CDIP outperformed both a model pre-trained 
on ImageNet and a model with random initialization.  
 
The overall task can be detailed and broken down into two sub-tasks as below: 

(1) Data acquisition: We first need to import datasets (i.e., campaigns) from By the People collection 
and manually label each image to construct a ground-truth. The number of data points in the 
smallest dataset in literature is 3,483 labeled images. So, hitting that number would be the best-
case scenario. If this is not achievable, we can lower the bar to 1,000. 

a. Subtask 1. Write a script to download a bulk of images from LoC website using loc.gov 
JSON API to our cdrhdev2 server. 

b. Subtask 2. Annotate each image with one of the following labels (integer format): (1) 0; 
handwritten, (2) 1; typed, and (3) 2; mixed. 

(2) Training model: While we are doing the data acquisition, at the same time, we can setup and start 
Experiments 1 and 2. Once we have a dataset from the By the People collection, we can conduct 
Experiment 3. 

a. Experiment 1. In order to reproduce the results of aforementioned papers, we start training 
VGG-16 pre-trained on ImageNet with a subset of RVL_CDIP. 

b. Experiment 2. In order to generate a VGG-16 pre-trained on RVL_CDIP, we start training 
VGG-16 pre-trained on ImageNet with full RVL_CDIP. 

c. Experiment 3. We start training VGG-16 pre-trained on full RVL_CDIP with a dataset 
from By the People collection. 
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Progress Report – Document image classification for digital 
library collections 

 
08/20/2019 
Mike Pack 

 

Objective 
In this report, we aim to report on the following two experimental results: (1) classification 
performances of VGG-16, pre-trained on ImageNet, trained and tested with RVL_CDIP dataset 
and (2) classification performances of VGG-16, pre-trained on RVL_CDIP in (1), trained and 
tested with suffrage_1002 dataset collected from the By the People corpus. The remainder of this 
report is organized as follows: in Experiment 1, a configuration of a dataset (i.e., RVL_CDIP) 
and training process is described, followed by training and testing results. In Experiment 2, 
similar to Experiment 1, a configuration of a dataset (i.e., suffrage_1002) and training process is 
described, followed by training and testing results. 
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Experiment 1:  
Training and Testing VGG-16 pre-trained on ImageNet with RVL_CDIP 
The objective of this experiment is to reproduce the result reported in the work of Harley et al. 
(2015) which is training a model, VGG-16, with a large-scale document image dataset (i.e., 
RVL_CDIP) using transfer learning [1]. The advantage of this experiment is that once we have a 
model trained on this large-scale document image dataset, we can reuse the rich features that this 
model has learned for many document analysis tasks, say, one of our main tasks, a document 
type classification.  
 
Dataset: RVL_CDIP 
The RVL_CDIP dataset, which is publicly available, consists of 400,000 document images that 
are divided into 16 evenly distributed classes. The dataset is provided in three different sets: 
training, validation, and test set. The training set contains 320,000 images of 16 different evenly 
distributed classes (i.e., about 20,000 images per class). Both validation and test sets together 
contain 40,000 images of 16 different evenly distributed classes (i.e., 2,500 images per class). 
 
Network Architecture: VGG-16 
We use the original VGG-16 architecture, but the output tensor is adjusted to have a shape of 16, 
which is the number of classes found in the RVL_CDIP dataset. 
 
Training 
As a preprocessing step, in order to make the shape of our input to match with that of VGG-16, 
we convert grayscale images to three-channel images by simply copying the pixel values of the 
single-channel to three channels. Also, each image is resized to 224 by 224, and normalized to 
range from 0 to 1 by dividing each pixel’s intensity value by 255. In accordance with the size of 
the training set and under a limited memory constraint, we use a batch size of 126. As an 
optimizer, we use adaptive momentum estimation, or so-called Adam, which is the state-of-the-
art optimizer and also known as the rule-of-thumb [2]. The initial learning rate is set to a small 
value, 10#$. This is because the model has been already pre-trained on ImageNet, so we want to 
prevent overshooting local minima of the loss function. The training is scheduled to run 80 
epochs total, but we use early-stopping to terminate the training process if the validation loss is 
not improved than that of the previous iteration. 
 
Results 
Interestingly, the entire training process took only three epochs to converge with promising 
classification results. This indicates that features obtained from natural scene images (i.e., 
ImageNet) are general enough to be applied to documents. The resultant classification 
performance metrics—precision, recall, and f1-score—are shown in Table 1. On average, each 
metric shows around 87%, which aligns well with the result reported by Harley et al. (2015). In 
Figure 1, more detailed classification performance on the test set is visualized as a heatmap. A 
series of high support values in diagonal elements indicates that the trained model is capable of 
producing many correct predictions.  
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Table 1. Precision, recall, and f1-score of VGG-16 trained on RVL_CDIP dataset. The alphabetic labels are 
corresponding to the following labels: letter, form, email, handwritten, advertisement, scientific report, scientific 

publication, specification, file folder, news article, budget, invoice, presentation, questionnaire, resume, and memo. 
Our class of interest, handwritten, is bolded. 

(unit: %) A B C D E F G H I J K L M N O P Avg 
Precision 86 74 98 89 89 73 90 88 89 92 87 91 78 91 92 88 87 

Recall 94 79 97 96 91 73 93 91 97 86 83 86 79 73 94 91 87 
F1 86 77 97 92 90 73 91 90 93 89 85 88 79 81 93 90 87 

 

 
Figure 1. Heatmap of confusion matrices for classification performance of VGG-16 trained on RVL_CDIP. Note that 
the diagonal elements represent the numbers of occurrences for which the predicted label is equal to the true label, 
while off-diagonal elements are those that are misclassified by the classifier. The higher the diagonal values of the 

confusion matrix the better, indicating many correct predictions. 
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Experiment 2: 
Training and Testing VGG-16 pre-trained on RVL_CDIP with 
suffrage_1002 
The objective of this experiment is to generate our own model for this specific task—three-class 
document type classification; handwritten, typed, mixed—by retraining the model obtained from 
the previous Experiment 1 with our own suffrage_1002 dataset. 
 
Dataset: suffrage_1002 
Thanks to Dr. Lorang and Ashlyn Stewart, we have collected a total of 1,002 images from a 
suffrage collection in By the People corpus1. This dataset is a fully balanced set (334 
handwritten; 334 typed; 334 mixed) that has been compiled manually. The entire dataset is split 
into three sets—training, validation, and test—with the ratio of 8:1:1. Note here that in order to 
keep the class balanced during this split, it is inevitable to drop some datapoints (i.e., three 
datapoints). Our final dataset configuration is elaborated in Table 2. 
 

Table 2. Configuration of suffrage_1002 dataset. 
 handwritten typed mixed Total 

train 267 267 267 801 
validation 33 33 33 99 

test 33 33 33 99 
Total 333 333 333 999 

 
Network Architecture: VGG-16 
We use the same VGG-16 architecture as in Experiment 1, but the output tensor is adjusted to 
have a shape of 3, which is the number of classes specified in suffrage_1002 dataset. 
 
Training 
All the training configuration is the same as the previous Experiment 1, except for an initial 
learning rate and batch size. We use an initial learning rate of 10#%, which is smaller than the 
one used in Experiment 1, since the model is pre-trained on RVL_CDIP on top of ImageNet. We 
also use a smaller batch size of 32 in accordance with the size of suffrage_1002 dataset. 
 
Results 
Generally, one can diagnose whether a model is overfitted or underfitted to its training dataset 
based on a model’s training and validation loss. For example, if a validation loss increases while 
training loss decreases, the learned model is speculated to have overfitted. Taking this into 
account, as shown in Figure 2, based on the overall decreasing trends of both training and 
validation loss, during the training, there is no symptom of overfitting or underfitting.  
Overall, our model’s classification performance on the testing set shows about 90% of precision, 
recall, and f1-score, as shown in Table 3. Compared to the other two classes, a mixed type shows 
relatively poor recall performance (i.e., 79%). We believe that this is due to challenging 
characteristics of mixed type document images; for example, too small amounts of handwriting 

 
1 https://crowd.loc.gov/topics/suffrage-women-fight-for-the-vote/ 
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in a typed document, or vice versa, as shown in Figure 3. In Figure 4, more detailed classification 
performance on suffrage_1002 test set is visualized as a heatmap. 
 

 
Figure 2. Training and validation loss of VGG-16 with suffrage_1002 training and validation set. In spite of some 

fluctuations, the overall trend of validation loss goes down. 
 

 
Figure 3. Failure prediction cases. On the left example, a typed region is relatively smaller than that of handwriting. 

On the right example, a handwriting region is relatively smaller than that of typing. 
 

Table 3. Precision, recall, and f1-score of VGG-16 on suffrage_1002 testing set. 
(unit: %) handwritten typed mixed Avg 
Precision 89 91 90 90 

Recall 97 94 79 90 
F1 93 93 84 90 
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Figure 4. Heatmap of confusion matrices for classification performance of VGG-16 trained on suffrage_1002. Note 
that diagonal elements contain most of datapoints, which indicates that most of our model’s predictions are correct 

over all three classes.  
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Progress report 
Yi Liu 

Current Progress 
Document Image Quality Assessment 
In the last progress report (Document image quality assessment for digital library collections), we 

proposed to perform document image quality assessment (DIQA) to By the People dataset. Hence, in this 

report, we downloaded 36,003 images from the civil war collection (the dataset) of By the People. And 

we analyzed the outcome of the assessment results.  

The DIQA algorithms used in this experiment were developed as part of the project Aida to assess qualities 

of newspaper page images from 1834 to 1922, which included four criteria: (1) skewness, (2) contrast, (3) 

range-effect, and, (4) bleed-through (background noise). We found that, for newspaper page images, a 

contrast score higher than 40 could be considered as having good contrast quality. And a range-effect 

score lower than three could be considered as having no or fewer range-effect issues. However, there was 

no clear indicator for skewness and bleed-through assessment. All we could say was that the lower the 

score on skewness or bleed-through, the better the quality.  

In this statistical analysis, there were 35,990 out of 36003 images that successfully passed the quality 

assessment program. 13 images failed due to exceptions of the program caused by incorrect assumptions. 

We will later dig into the program to find the detailed reasons causing these exceptions.  

Skewness.  For skewness evaluation shown in Figure 1, there are 43.63% (15,703 out of 35990) images in 

the dataset with the maximum skewness score (i.e., score of 2). Hence, there are 43.63% images that are 

significantly skewed.  There are 7.25% images that are lightly skewed (i.e., skewness ~1-2) in the dataset. 

Further, 2.48% of the images are trivially skewed (i.e., skewness < 1) in the dataset. And there are 43.63% 

images that are not skewed at all. Note that the larger the absolute value of the score, the more skewed 

the document image. And a positive or negative score indicated the skewness orientation. In Figure 1, 

“|score|” means the absolute value of the skewness score. 

 

Figure 1 Skewness analysis 

Contrast.  For contrast evaluation, shown in Figure 2, images from 1930 to 1939 result in lowest contrast 

score (i.e., score of 23.87). And images from 1910 to 1919 result in highest score (i.e., score of 70.88). 

Note that, in this analysis, the higher the contrast the better the visual quality. Hence, based on the study 
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of Aida (i.e., score above 40 indicating good quality in contrast evaluation), except for images from 1860 

to 1869 and from 1930 to 1939, the collection has a good contrast quality. However, there are 90% images 

from 1860 to 1869 in the collection. Hence, the 10-year chart (Figure 2) is not a good representation of 

the overall collection. As a result, we break the 10-year period from 1860 to 1869 into a year-by-year 

chart, shown in Figure 3.  

 

Figure 2 Contrast Score Analysis 

 

Figure 3 Contrast Score Analysis from 1860 to 1869 

 

The breakdown chart shows that images with low score are from years 1861 to 1865. We suspect that the 

low score could be document images that are digitized from handwritten letters, shown in Figure 4. There 

are two problems among these letters that could lower the contrast score. First, the background largely 

suffers from yellowing. And, second, the ink is significantly faded. Further, we see that the appearance of 

low scores overlaps with the civil war years.  Hence, the low score may also due to the degradation of the 

document considering the plausible challenges in newspaper preservation during the war. 
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Figure 4 Handwritten letter with fading out ink 

Range-effect. For range-effect evaluation, shown in Figure 5, images from all (but one) year ranges have 

relatively low scores.   For the year range of 1930-1939, there are two with relatively high scores and 

hence the score of 27.33. Note that, for range-effect evaluation, the lower the score the better the quality. 

However, compared to our baseline study done in the Aida project that found any score below three 

implied good quality in range-effect evaluation, the civil war collection suffers from relatively more range-

effect problems than the newspaper collection previously evaluated by Aida. This does not mean that the 

visual quality is necessarily visually for human perception. But it indicates that the collection could need 

substantial preprocessing to reduce range-effect before in-depth analysis. 

 

Figure 5 Range-effect Score Analysis 

Bleed-through. For bleed-through (background noise) evaluation, shown in Figure 6, again, images from 

all year ranges (except one) have relatively low scores on bleed-through evaluation.   For the year range 

1940-1949, there are 76 images with high scores and hence the score of 12.10). Note that, the lower the 

bleed-through score the better the quality.  However, a score identifying generally good quality does not 

exist for bleed-through evaluation. We can only confidently say that the score of zero is ideal.  
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Further, based on observation, the “paper yellowing” issue is a major problem in the collection. In our 

processing, a document image is first converted into a grayscale image by the evaluation algorithm. 

Hence, the yellowing paper results in a dark background after the conversion. A dark background would 

affect bleed-through evaluation, even, might result in a faulty evaluation. However, this does not mean 

that the bleed-through evaluation is not useful. Considering, in a way, the bleed-through evaluation 

represents the quality of background cleanliness, and thus, a high score can suggest that the background 

may need a noise removal process. 

 

Figure 6 Bleed-through Score Analysis 

Differentiation between Microfilm and Scanned images 
The types of digitization that generated the document images are mixed. There are both microfilms and 

scanned images in the collection.  As a result, techniques developed for one type might not work for the 

other.  In our DIQA suite of image processing tools, for example, we assume that the document images 

were scanned images, with white or brighter pixels as background, and darker pixels as texts.  However, 

documents from microfilm sometimes have inverted range of pixel intensities, rendering our image 

processing tools not effective.  Hence, we propose a way to differentiate the digitization type of document 

to metatag them for further processing. 

We propose to adopt the current state-of-art image classification model, called ResNeXt, to classify the 

digitization type of documents. In addition, to train the model, we need a set of labeled images. Hence, 

we manually build a database containing 1200 images from the civil war dataset. In this database, there 

are 600 scanned document and 600 documents from microfilm. A balanced database is built so that the 

training will not be biased.  

Further, in a general idea of a machine learning training process, we want to keep the database as 

balanced as possible to prevent bias problem. This applies to not only numbers of instance for each label, 

but also other aspects such as skewness, contrast, range-effect, and bleed-through. In other words, we 

want our model to “see” as many conditions as possible during the training. Hence, during the creation of 
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the database, we randomize the file list to make each image in the collection has a fair chance to be 

included by the database. 

Moreover, we also want to maintain replicability for future studies. So, the randomization was performed 

with a fixed random seed using a pseudo-randomization algorithm. By taking advantage of the 

randomization algorithm, we can reproduce the result as needed. 

Shown in Figure 7, the ResNeXt model works very well on differentiating the two digitization types. The 

training process took only two iterations to reach over 90% accuracy. And test accuracy reached 100% 

correct at the 8
th

 iteration. We see that the test accuracy at 7
th

 iteration drops to 2.5%. This may be caused 

by the optimizer of the training process. The optimizer keeps a momentum to make the training process 

to be able to jump out of a local minimum. Hence, it may result in abnormal test accuracy. However, the 

test accuracy in these iterations does not necessarily affect the final performance of the classification as 

long as the training does not stop on these iterations. 

 

Figure 7 Digitization Type Differentiation using ResNeXt-100 64x4d 

Work That Has Been Done 
Task 1 
36,003 images from the civil war collection were downloaded through the website of By the People. And 

the downloaded image was backed up and stored in the CDRH server of the Aida team.  

@cdrhdev2.unl.edu/var/local/aida/by-the-people_civil-war 

Task 2 
Collect information of creation/publication years of the corresponding item of the civil war collection for 

DIQA analysis. 
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Task 3 
Manually create a database containing 1200 images to perform training and evaluation for the digitization 

type classification.  

@cdrhdev2.unl.edu/var/local/aida/by-the-people_civil-war/microfilms.txt 

@cdrhdev2.unl.edu /var/local/aida/by-the-people_civil-war/scans.txt 

Task 4 
Adopt ResNeXt model from ImageNet-1000 

Task 5 
Create corresponding code to fine-tune and classify the digitization type. 
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Progress Report on Second Iteration 
Yi Liu 

1.  Differentiation between Microfilm and Scanned images 
In the first iteration of this project, we proposed to adopt the state-of-art image classification model, 
ResNeXt, using transfer learning, to classify the digitization type of documents. In addition, to train the 
model, we created a labeled database containing 1,200 images from the Civil War dataset. In the 
database, there are 600 scanned document and 600 scanned documents from microfilm.  

In the second iteration, we continue to fine-tune the model for a better classifier. Based on the 
observation during the labeled database construction, the ratio of the number of digitized materials from 
microfilm to those from the scanning process is about 1 to 16. Hence, there are three metrics to evaluate 
the fine-tuned classifier.  

Further, three evaluation metrics are (1) training performance, (2) validation performance, and (3) 
prediction performance. First, the training performance is the classification performance on the training 
set, which is 90% of the 1200-database. This metric represents the ability of the classifier on classifying 
data has been seen by the model. Second, the validation performance is the classification performance 
on the validation set, which is the rest 10% of the 1200-database. And this metric validates the training 
process to compute an expected prediction performance using a small set of labeled unseen-data. And 
third, the prediction perfrmance is an evaluation of the entire Civil War collection. Based on the previous 
observation, the entire Civil War is expected to have about 2,256 document images digitized from 
microfilm. Hence, by comparing the predicted ratio of microfilmed and scanned document images, the 
strength of the classifier can be observed. 

In the experiment, at which time to stop the training process and save the trained weights of the classifier 
is based on the training performance and validation performance. The general idea is to stop the training 
when both training and validation performances are good (i.e., the harmonic mean of training and 
validation F1 scores is greater than 99%). At the same time, we want to avoid overfitting and underfitting.  
Overfitting means the training performance is higher than the validation performance. Hence, the 
classifier could suffer from picking up noise when overfitting occurs.  Underfitting means the validation 
performance is higher than the training performance.  This is where the prediction could be biased. 
Considering the harmonic mean of two metrics has high response if two metrics have high values, and, at 
the same time, they are close to each other. Therefore, we compute the harmonic mean of the training 
and validation performance to decide the stopping point of the training.  

Shown in Figure 1-4, the model started to converge usually after around 30 epochs. And both training and 
testing performances on the accuracy, precision, recall and F1 score are very promising.  After 
convergence, the best epoch is the 44th training epoch, where the training accuracy is 98.52%, and the 
validation accuracy is 100%. Hence, the 44th epoch is stored for analyzing prediction performance.  

In the prediction performance analysis, the stored classifier made predictions on the entire Civil War 
collection. Table 1 shows the prediction results. The prediction ratio of microfilmed document images to 
scanned document images is roughly 12:1. Hence, the classifier is more generous in classifying a document 
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image as digitized from microfilms than the expectation (i.e., 16:1). Figure 5-8 shows 4 types of typical 
mis-classifications. 

The four types of “problematic” document images, are:  (1) one that is largely “blank” (e.g., Figure 5); (2) 
one that has poor contrast quality (e.g., Figure 6); (3) one that is a picture of a physical item (e.g., a coin 
in Figure 7); and (4) one that is a graphical photo (e.g., a portrait photo in Figure 8). We suspect that there 
are two possible reasons. First, for type (1), there is little information for the classifier to make prediction 
since the document image contains largely background pixels. Second, for type (2), the poor quality could 
weaken the visual features that are required for the classifier to make the prediction. Third, these four 
types are rare or missing from the training database. Hence, the classifier was not trained sufficiently to 
make predictions.  

Therefore, for future iterations of this project, two options could effectively improve the performance 
further. First, we can expand the training database to include more examples of the four-type document 
image to increase the variety. Second, we can apply a pre-processing step to normalize the document 
image quality for the collection before the prediction stage. 

2.  Conclusion 
We found that classification performance for the digitization type differentiation to be promising. There 
are some mis-classified cases. However, the problem could be fixed by increasing the variety of the 
training database and applying pre-processing techniques. Further, although the microfilmed photo was 
not included in the training database, the classifier was able to correctly predict such photo as microfilmed 
material, shown in Figure 9. This suggests that the model has the generality to apply on a large collection 
for digitization type prediction.Type	equation	here. 

 

Figure 1 Training and validation accuracies 
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Figure 2 Traing and validation precisions 

 

Figure 3 Training and validation recall 
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Figure 4 Training and validation F1 score 

Table 1 Prediction Results 
Total Predicted Microfilmed 

Documentation 
Predicted Scanned 

Documentation 

36103 2834 33269 
 

 

 

 

Figure 5 Type (1) mis-classification: "blank" document image 
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Figure 6 Type (2) mis-classification: poor contrast quality 

 

Figure 7 Type (3) mis-classification: item images 
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Figure 8 Type (4) mis-classification: graphical images (photo) 

 

Figure 9 Microfilmed frame-photo being correctly classified 
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Progress Report on Second Iteration 
Yi Liu 

1. Introduction to Weak Supervision 
Machine learning models, especially for deep learning models, needs large amounts of labeled data for 
the training purpose. However, these data usually involves the high-level supervision, such as manually 
visual supervision. The traditional approach to get such supervision involves subject matter experts whom 
is familiar to the database and the task. Considering the amount of the labeled data required, it could cost 
months or even years to build the groundtruth database for the experts.  

In fact, one of the most important advantages that the deep learning model is that, such model allow 
developers to get the state-of-art performance without the hand-engineered features of the data. Such 
features involves the high-level supervision and abstraction of the subject matter experts. Hence, the 
deep learning models free the labor of the expert during the model design. However, they are not 
compeletely freed from the loop of the machine learning, as we still need high-level supervised dataset 
for training.  

Therefore, a tool is needed to get the large training dataset for machine learning techniques. The waek 
supervision is a new programming paradigm designed form machine learning. It provides a bridge 
between high-level supervision and dataset required by machine learning models. The weak supervision 
introduces programming tools such as heuristic rules, constraints, and invariances to get labeled data 
based on subject matter experts’ knowledge. Hence, the basic procedure is, first, get detailed description 
on how to label data from the subject matter expert. Second, developers convert the description to 
computer language using the weak supervision. Third, the computer runs to build the labeled dataset. 

2. Motivation 
2.1 A large training dataset is commonly required 
A general idea to train a better machine learning model, especially a deep learning model, is the more 
data the better. 

In the first iteration of this project, we proposed a two-step approach to extract figure/graph and generate 
metadata for beyond words collection. The first step, an FCN (U-NeXt) combining ResNeXt and U-Net was 
built and trained to segment and classify graphic snippets on newspaper pages based on ground truth 
extracted from Beyond Words. Besides, the ResNeXt part of the model was transferred  from pre-trained 
ImageNet ResNeXt-101 to reduce training parameters. Based on dhSegment, using transfer learning is 
able to boost training effectiveness, and preserve a good performance. The second step, a text 
segmentation, and recognition model retrieved textual content in the graphic snippets (i.e. extracted 
graphic snippets from the first step). Specifically, EAST text detection was applied to find text regions for 
an OCR process to retrieve words within graphic snippets. And the retrieved word was encoded into 
metadata for further usages, such as search queries. 

In the second iteration, we focus on evaluating and improving segmentation step using U-NeXt model. 
The U-NeXt model is an extension on dhSegment model. The dhSegment used pre-trained ResNet while 
our U-NeXt used pre-trained ResNeXt model. Noet that, ResNeXt is an improved version of ResNet. In the 
study of dhSegment on Beyond Words collection, the classification accuracy was 88% and the mean 
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intersection over union (mIoU) was 26%. The U-NeXt is expected to have a better performance than 
dhSegment. Further, the EAST text dection largely depends on the performance of the segmentation step. 
Hence, improving segmentation step is a key opponent in this project. 

Note, two metrics are used to evaluate the performance in this project. First, the classification accuracy 
is a pixel-wise accuracy. It computes the percentage of correctly labeled pixels to total numbers of pixels 
for each class.  Second, the mIoU evaluates if the predicated region accurately covers the true region in 
the groud-truth overall classes. And for both metrics, the higher the better.  

2. Dataset 
Two datasets were used to train and evaluate the segmentation step using U-NeXt model. In Beyond 
Words collection (BW), some graphic region appeared on the page are missing in the ground-truth. And 
the marked region in the ground-truth does not tightly bond to the actual shape of the graphic region. 
Hence, we pre-train our model on a more comprehensively labeled dataset called Eurapean Newspaper 
collection (ENP). By doing so, during training, some local minimum, which created by the issue in Beyond 
Words collection, could be avoided. Specifically, the ENP contains 480 images in total, in which, there are 
384 images in training set and 96 images in validation set. And the BW contains 1,532 images in total, in 
which, there are 1,226 images in training set and 306 images in validation set. 

Further, the similarity shared by ENP and BW collections is the crutial reason why the ENP can be used for 
pre-training. First, both ENP and BW collections are document images that are digitized from newspapers. 
Hence, they share similar content layout and density. Second, the ground-truth of the ENP marked five 
classes: (1) background, (2) text, (3) figure, (4) layout separator, and (5) table; while the ground-truth of 
the BW marked background and five detailed type of figures. Hence, the learned knowledge from the pre-
trained model on figures using the ENP prevides a good reference for U-NeXt to identify the figure region. 
Then, the fine-tuning using the BW could focus on detailed figure type differentiation than identify the 
figure region. 

3. Experimental Results 
In this experiment, early stopping is not applied since the expectation on the performance is unknown. 
Hence, we set the pre-training process on the ENP up to last 700 iterations, and the fine-tuning process 
on BW up to last 80 iterations to oberserve the performance as the preliminary result for observation. 

Shown in Figure 1, the training performance of pre-training stage on the ENP reached 72% on training 
accuracy and 63% on training mIoU. And the testing performance of the pre-training stage reached 68% 
on testing accuracy and 53% on testing mIoU. 

Shown in Figure 2, the fine-tuning stage on the BW was able to reach 64% on training accuracy and 47% 
on training mIoU, and reach 59% on testing accuracy and 52% on testing mIoU at an early iteration (i.e., 
at third iteration). However, the fine-tuning stage tried to classify all pixels as background pixels after 
convergence. This suggests that the Beyond Words ground-truth is severely biased. Amount of pixels from 
non-background classes is too small. During fine-tuning stage, a small weight was applied to background 
class (i.e., less than 0.1), the fine-tune still wants to classify all pixels as background. 

Therefore, based on the observation, by combining all non-background class as one class (i.e., graphics), 
splitting six-class segmentation task to a pipline of two tasks: (1) extraction of graphics and (2) 
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classification of graphic types could be a better approach. In preliminary experiment, the extraction of 
graphics had >60% on both training and testing mIoU. 

2.  Conclusion 
We found that classification performance for the digitization type differentiation to be promising. There 
are some mis-classified cases. However, the problem could be fixed by increasing the variety of the 
training database and applying pre-processing techniques. Further, although the microfilmed photo was 
not included in the training database, the classifier was able to correctly predict such photo as microfilmed 
material, shown in Figure 9. This suggests that the model has the generality to apply on a large collection 
for digitization type prediction. 
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Progress Report – Deep Clustering for Metadata Generation 
 

09/23/2019 
Mike Pack 

 

1. Introduction and Objectives 
 
In this study, we explore and evaluate the potential for deep-visual-representation-based 
clustering approach to generate and analyze metadata from a large-scale digitized document 
image collection (in this case, European historical newspapers.) In particular, we utilize deep 
visual representation extracted from image classification/segmentation model and from which 
datapoints are clustered using t-SNE, which is one of the state-of-the-art clustering methods. 
The idea behind this approach is fairly simple. If we can obtain a manifold of a large-scale 
dataset, then many of meta related tasks (e.g., metadata generation, suggestion, and refinement) 
can become relatively trivial tasks based on the following two assumptions: 
 
Assumption 1. The deep visual representation of each datapoint contains enough feature 
information to be clustered. 
Assumption 2. In the clustered manifold, datapoints resides in the same neighborhood will share 
similar visual metadata to each other. 
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2. Method 
 

 
Figure 1. Latent space of dhSegment. This model is a combination of ResNet-50 and U-net. From this model, we 

extract only the highlighted block, which is known as a latent space. 
 
First, unlike traditional clustering approaches using a set of hand-crafted features extracted from 
images, we extract a set of feature maps—so-called, latent space—learned by a deep model, in 
particular, a ResNet-50 + U-net that we trained for our first page segmentation project, as shown 
in Figure 1. Here, the size of latent space is W/32 x H/32 x 2048, visualized in Figure 2, here W 
and H are the width and height of input image, respectively. It is unsuitable to use this latent 
space directly for clustering task due to the following two aspects.  

• First, the dimension of the latent space is inconsistent since the width and height of the 
input images can vary, whereas clustering method usually requires a fixed size of the 
dimension of features.  

• Second, the dimension of the latent space is too large. For example, the resolution of our 
input images is usually about 1800 x 2400, and the corresponding latent space becomes 
about 1800 x 2400 x 2048, which would contain redundant information that degrades 
clustering performance in both quality and computation time.  

Thus, for dimensionality reduction purpose, we perform an average pooling for each of 2048 
feature maps to keep only the intensity of activation but ignore where that activation has 
occurred. By doing this, the dimension of our latent space is reduced down to 1 x 1 x 2048. 
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Figure 2. Left: Input image; Right: Visualized latent space down-sampled to W/32 x H/32 x 25 

 
Our reduced latent space is then clustered using t-SNE, which is known to be an efficient and 
effective clustering algorithm that can map a high-dimensional data into a low-dimensional 
space, 2-d in our case. The way t-SNE works is by (1) converting the pairwise distances in both 
latent space and the low-dimensional space into probabilities that measures the similarity of two 
series of data points and (2) minimizing the Kullback-Leibler divergence between those two 
probabilities.  
 
Once we obtain the manifold of our dataset in a low-dimensional space, we can then visually 
inspect and analyze whether datapoints residing in the same neighborhood (i.e., cluster) shares 
similar visual metadata, such as density, the existence of figure, layout, visual quality, etc. 
 

3. Experimental Results 

3.1. Initial Study 
A total of 96 document images from European historical newspaper dataset are randomly 
collected and tested. The clustering result is shown in Figure 3. From the result, we can observe 
that 96 datapoints in 2048-dimensional space are grouped into roughly 3 clusters in 2-
dimensional space. For each of 3 clusters, 4 datapoints are picked and colored in red, yellow, and 
green, respectively, to visually inspect the following two points: (1) intraclass correlation; 
whether datapoints in the same cluster share the similar visual features and (2) interclass 
correlation; whether different clusters show dissimilarity to each other. 
 
First, as shown at the bottom row in Figure 3, the four sampled images in the same cluster does 
share similar visual features; for example, all four images in each color box (i.e., red, yellow, and 
green) show similar degree of brightness (i.e., white, gray, and dark) and contrast (i.e., high, 
medium, and low). This result implies that there is a certain amount of intraclass correlation; 
images in the same cluster somewhat resemble to each other.  
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Second, as shown at the bottom row in Figure 3, images in different clusters does show 
distinctive visual features; for example, images in the red box show a sparse layout (i.e., 2-
column) whereas images in the yellow box show denser layout (i.e., more than 2 columns with 
various figures). Note here that image 8 shows a rather sparse layout and this is captured in the 
visualized cluster:  its location is somewhat far apart from the rest of three datapoints in the 
yellow cluster (i.e., images 11, 66, and 5). Similarly, images in the green box show relatively 
dense layouts compared to the images in the red cluster and they also contain numerous figures. 
 
 

 
 

           
 
Figure 3. Top row: Visualization of latent space of ResNet-50 mapped into a low-dimensional space using t-SNE. 

For visual similarity inspection purpose, we selected four datapoints from different clusters labeled them in different 
colors; orange, green, and red. On the top-right of each exemplary datapoint, its image identification number is 

displayed. Bottom row: Actual image of each exemplary datapoint. Images are grouped in the bounding box in a 
color corresponding to that of datapoint. Note that images in the same cluster share similar characteristics, whereas 

different cluster shows different characteristics. For example, images in the red group show high contrast and simple 
layout structure. The images in the orange group show relatively grayish appearance without figure components. 

The images in the green group show relatively darker appearance with figure components. 
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3.2. Normalized Study 
From the above first experimental results, it is reasonable to question whether this clustering 
result is simply based on the intensity value of image, and thus we performed the second 
experiment to cluster deep visual representations extracted from images that are normalized to 
have zero mean and a unit standard deviation of intensity value, as shown at the bottom row in 
Figure 4. 

 
 

                 
Figure 4. Top row: Visualization of latent space of ResNet-50 with normalization mapped into a low-dimensional 

space using t-SNE. For visual similarity inspection purpose, we selected four datapoints from different clusters 
labeled them in different colors; orange, green, and red. On the top-right of each exemplary datapoint, its image 

identification number is displayed. Bottom row: Actual image of each exemplary datapoint. Images are grouped in 
the bounding box in a color corresponding to that of datapoint. Note that at this time, images are normalized first, 
and then the deep visual representations are extracted and clustered. The clustering result shows similar clustering 

pattern as the previous clustering result; however, some datapoints sharing similar layout structure are slightly 
separated from each other, for example, image 66 and image 11 in the yellow cluster. 
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As shown at the top row in Figure 4, from the second experiment, we make two observations. 
First, the clustering result using the deep visual representation excluding intensity features shows 
a similar pattern to that of using the deep visual representation including intensity features. This 
outcome implicates that the performance of our clustering approach is not based primarily on 
intensity features. Second, based on the observation that some datapoints sharing similar layout 
structures are slightly separated from each other compared to the first experiment clustering 
result; for example, image 66 and image 11 in the yellow cluster, intensity feature does have an 
effect on the clustering process. 
 
As another step to investigate and analyze the relationship between clusters and visual metadata, 
we can generate DIQA and complexity scores—that measure how dense and busy a document 
image is—for each datapoint and explore whether they are statistically significant or not for a 
more objective evaluation on the clustering result, which will be our 3rd iteration on DIQA and 
Segmentation/Classification. 
 
 

4. Conclusions 
 
In this study, we have presented a viable solution for visual metadata generation using a deep-visual-
representation-based clustering approach. As shown in our first experiment, a set of deep visual 
representations of document images can be mapped into a low-dimensional space efficiently and 
effectively in which neighboring datapoints show considerable visual similarity. Also, as shown in our 
second experiment, this visual similarity is not based primarily on simple intensity features; rather on 
high-level visual features, such as layout density. 
For better comprehensive understanding of deep-visual-representation-based clustering as a solution for 
visual meta generation, three additional experiments are needed: (1) investigate the use of another set of 
deep visual representations extracted by the unsupervised deep model (e.g., VAE) to build a more generic 
or universal deep-visual-representation-based clustering solution that is not limited to a specific document 
domain (European historical newspapers, in this case), (2) explore a more sophisticated way of 
dimensionality reduction techniques rather than a simple average pooling so as to retain spatial 
information for more accurate metadata generation, and (3) generate and analyze DIQA and document 
complexity score to examine whether clustering result is statistically significant or not, so that we can 
evaluate our solution in a more objective manner. 
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Progress Report on Second Iteration 
Yi Liu 

1.  Figure/Graph Extraction for Beyond Words Collection 
In the first iteration of this project, we proposed a two-step approach to extract figure/graph and generate 
metadata for the Beyond Words collection. The first step, an FCN (U-NeXt) combining ResNeXt and U-Net 
was built and trained to segment and classify graphic snippets on newspaper pages based on ground truth 
extracted from Beyond Words. Besides, the ResNeXt part of the model was transferred from pre-trained 
ImageNet ResNeXt-101 to reduce training parameters. Based on dhSegment, using transfer learning is 
able to boost training effectiveness, and preserve a good performance. The second step, a text 
segmentation, and recognition model retrieved textual content in the graphic snippets (i.e. extracted 
graphic snippets from the first step). Specifically, EAST text detection was applied to find text regions for 
an OCR process to retrieve words within graphic snippets. And the retrieved word was encoded into 
metadata for further usages, such as search queries. 

In the second iteration, we focus on evaluating and improving the segmentation step using the U-NeXt 
model. The U-NeXt model is an extension of dhSegment model. The dhSegment model used pre-trained 
ResNet while our U-NeXt used pre-trained ResNeXt model. Note that ResNeXt is an improved version of 
ResNet. In the study of dhSegment on the Beyond Words collection, the classification accuracy was 88% 
and the mean intersection over union (mIoU) was 26%. The U-NeXt is expected to have a better 
performance than dhSegment. Further, the EAST text detection largely depends on the performance of 
the segmentation step. Hence, improving segmentation step is a key component of this project. 

Note that two metrics are used to evaluate the performance of this project. First, the classification 
accuracy is a pixel-wise accuracy. It computes the percentage of correctly labeled pixels to total numbers 
of pixels for each class.  Second, the mIoU evaluates whether the predicated region accurately covers the 
true region in the ground-truth overall classes.  

2. Datasets 
Two datasets were used to train and evaluate the segmentation step using the U-NeXt model, the Beyond 
Words collection and the European Newspapers collection. In the Beyond Words collection (BW), some 
graphic regions appeared on a page are missing in the ground-truth. And the marked region in the ground-
truth does not tightly map to the actual shape of the graphic region.  This lack of reliable ground-truth in 
the BW collection led us to pre-training our model on a more comprehensively labeled dataset called the 
European Newspapers collection (ENP). By doing so, during training, some local minimum, created by the 
aforementioned issues in the Beyond Words collection, could be avoided. Specifically, the ENP contains 
480 images in total, in which, there are 384 images in training set and 96 images in validation set. And the 
BW contains 1,532 images in total, in which, there are 1,226 images in training set and 306 images in the 
validation set. 

Further, the similarity shared by ENP and BW collections is the crucial reason why the ENP can be used 
for pre-training. First, both ENP and BW collections are document images that are digitized from 
newspapers. Hence, they share a similar content layout and density. Second, the ground-truth of the ENP 
marked five classes: (1) background, (2) text, (3) figure, (4) layout separator, and (5) table; while the 
ground-truth of the BW marked background and five detailed types of figures. Hence, the learned 
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knowledge from the pre-trained model on figures using the ENP provides a good reference for U-NeXt to 
identify the figure region. Then, the fine-tuning using the BW could focus on detailed figure type 
differentiation than identify the figure region. 

3. Experimental Results 
In this experiment, early stopping is not applied since the expectation of the performance is unknown.  
Here we report on two sets of results: from the pre-training experiment and from the fine-tuning 
experiment: 

• The pre-training experiment involved training and testing on the ENP dataset (up to 700 iterations).   
• The fine-tuning experiment involved four different approaches.   

o The first approach trained and tested on the BW dataset without using the ENP-trained classifier.  
This is meant to serve as a baseline design.  

o The second approach used the above ENP-trained classifier as the beginning classifier, and 
training and testing it on the BW dataset (up to 80 iterations). We added this design because using 
a pre-trained classifier for a similar task could help the fine-tuning experiment address the issue 
of lack of ground truth data mentioned in the previous section.  This second approach is a variant 
of the first approach. 

o The third approach replaced the deconvolutional layer with a resizing layer in the deep learning 
model, and training and testing on the BW dataset. Since the deconvolutional layer is known to 
suffer from the “checkerboard” issue [Distill 2016], the resizing layer is seen as a potential 
improvement technique.  This third approach is thus a variant of the first approach. 

o The fourth approach performed a two-class segmentation, instead of six classes on the BW 
dataset for both training and testing. This is because the training dataset is biased where there is 
a predominantly large number of background pixels compared to other classes of pixels1.  By 
collapsing all the object pixels into one class, we hope to reduce the imbalance in the number of 
pixels in each class during training.  This fourth approach is thus also a variant of the first approach. 

3.1 Pre-training Experiment 
Figure 1 shows the training performance of the pre-training experiment reaches 91.30% on pixel-wise 
accuracy and 57.19% on mIoU. And the testing performance is 81.90% on pixel-wise accuracy and 48.18% 
on mIoU. From the result, the convergence is observed (i.e., the tendency of accuracy gets close to 100% 
percent). The observed convergence indicates the parameters are getting trained to fit the task; hence, 
the model is ready for fine-tuning.  

3.2 Fine-tuning Experiment 1: without pre-trained ENP classifier 
Figure 2 shows the performance of the experiment without using the pre-trained ENP classifier reaching 
89.08% on training pixel-wise accuracy, 50.43% on training mIoU, 80.11% on testing pixel-wise accuracy 
and 38.00% on testing mIoU. The experiment lasts 80 epochs, and the convergence is observed on both 
training and testing curves. However, the testing curve shows instability, that, although the tendency 
towards higher testing accuracy, the testing accuracy varies high and low rapidly during the experiment. 
And Table 2 (row 1 - 4) shows the class-wise testing performance on accuracies and mIoUs. The class-wise 
stats show that the classifier failed to recognize classes of editorial cartoons, illustrations, and maps. These 

 
1 There are 88.21% pixels in background class, but for the rest of classes, only 0.71% in editorial cartoon class, 
2.89% in comics/cartoon class, 1.38% in illustration class, 6.64% in photograph class, and 0.18% in map class. 
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three classes happen to be the top three rarest classes. Hence, the misrecognition issue is likely caused 
by the rareness of corresponding classes. However, overall, the performance of the classifier is promising 
since both training and testing accuracies reached 80% within only 80 training epochs. 

3.3 Fine-tuning Experiment 2: using pre-trained ENP classifier 
Figure 3 shows the performance of the experiment using the pre-trained ENP classifier reaching 89.41% 
on pixel-wise training accuracy, 41.21% on training mIoU, 85.53% on testing accuracy and 38.57% on 
testing mIoU. Though the performance indicators above might look promising, upon further investigation, 
the classifier trained during the fine-tuning experiment attempted to classify as many pixels as background 
pixels after training convergence. Table 2 (row 5 - 8) shows the class-wise stats. We see that, after the 
convergence, all training and testing stats for non-background classes are zero. Hence, the performance 
stats are better than the first fine-tuning experiment numerically, but the actual performance is worse 
since none of the objective class was recognized. As previously mentioned, the background pixel is the 
majority over all pixels of the BW dataset. Such imbalance could create a “deep” local minimum. We 
suspect that the classifier fell into the “deep” local minimum. And it could not “jump” out from the 
minimum. In fact, the large fluctuations at the beginning epochs are indirect evidence. It shows that the 
classifier tried but failed to “jump” out from the minimum. However, the advantage of using pre-trained 
ENP classifier is the faster converging speed. Therefore, by taking such advantage, the computational 
resources could be saved comparing to others. 

3.4 Fine-tuning Experiment 3: using resizing layer 
Figure 4 shows that, for testing performance, the pixel-wise accuracy reached 86.69% and the mIoU 
reached 37.84%. The performance did not show clear improvement, because the pixel-wise testing 
accuracy is higher while the testing mIoU lower than the experiment 3.2. More, similarly, in the class-wise 
performance, shown in Table 2 (row 9 - 12), we also found that pixel-wise accuracy and mIoU of the 
editorial cartoon, illustration, and map classes are zeros. However, the curve in Figure 4 did not show the 
instability like experiment 3.2. Hence, the instability likely came from the “checkerboard” issue since the 
resizing layer was introduced to solve the issue. Therefore, from the perspective of stability, using the 
resizing layer has better performance than experiment 3.2. 

 3.5 Fine-tuning Experiment 4: combined two-class segmentation 
Training a classifier to learn information from rare classes is very hard. Hence, combining five non-
background classes into one class could decrease the complexity of the task, which could lead to 
improvements. In fact, pixels in non-background classes only 11.79% of the entire training dataset in total. 
And in this experiment, Figure 5 shows the combined class segmentation outperformed all other fine-
tuning experiments. That is, for training performance, the pixel-wise accuracy was 91.76% and the mIoU 
was 71.44%; and, for testing performance, the pixel-wise accuracy was 88.89% and the mIoU was 64.97%. 

Table 1 Average performance of fine-tuning experiments 

  
Without Pre-trained 
ENP Classifier 

Using Pre-trained 
ENP Classifier 

Using                
Resizing Layers 

Combined Two-class 
Segmentation 

  Train Test Train Test Train Test Train Test 
Accuracy 89.08% 80.11% 89.42% 85.53% 88.90% 86.69% 91.76% 88.89% 

mIoU 50.43% 38.00% 41.21% 38.57% 51.31% 37.84% 71.44% 64.97% 
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Table 2 Class-wise statistics of fine-tuning experiments 

      Background 
Editorial 
Cartoon 

Comics/ 
Cartoon Illustration Photograph Map 
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mIoU 90.81% 0.00% 7.00% 0.00% 54.46% 0.00% 
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 Accuracy 84.43% 0.00% 44.82% 0.00% 72.38% 0.00% 

mIoU 79.99% 0.00% 24.97% 0.00% 52.09% 0.00% 
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n  Accuracy 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

mIoU 89.42% 0.00% 0.00% 0.00% 0.00% 0.00% 

Te
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 Accuracy 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

mIoU 85.53% 0.00% 0.00% 0.00% 0.00% 0.00% 
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n Accuracy 90.87% 6.32% 41.85% 3.26% 88.22% 0.00% 

mIoU 89.46% 5.16% 29.07% 2.61% 47.90% 0.00% 

Te
st

 Accuracy 97.83% 0.00% 4.19% 0.00% 40.60% 0.00% 

mIoU 87.38% 0.00% 0.20% 0.00% 34.24% 0.00% 
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n  Accuracy 91.02% 90.45%     
mIoU 90.22% 52.66%     

Te
st

 Accuracy 92.82% 68.18%     
mIoU 86.64% 43.29%     

 

4.  Conclusion 
In this second iteration of the figure/graph extraction task, we tested our proposed U-NeXt model during 
the first iteration of exploration. The pre-training stage used the ENP collection. Though the pre-training 
performance was promising, it was not very strong. In addition, the fine-tuning stage with several 
experiments used the BW collection as well as other improvement techniques reported in machine 
learning. The fine-tuning experiments showed evidence that the issue in BW collection affected the 
performance.  

Further, according to the visualized extraction result, we found two widespread issues in the BW ground 
truth. First, the missing component issue appears to be quite widespread in the BW ground truth data. 
For example, shown in Figure 5, a large portion of a photograph in the document is missing from the 
ground truth, but is captured by our U-NeXt classifier. Second, there are inaccurate rectangular regions. 
For instance, shown in Figure 6, the ground truth region includes incorrectly a large portion of the text 
content. In future work, these issues are a good starting point for improving the BW ground truth. 
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However, we found a very interesting occurrence where the U-NeXt classifier tried to fit the exact shape 
of the figure/graph region. For example, shown in Figure 7, the classifier prediction tried to fit the exact 
shape of the eagle on the right-hand side of the newspaper page. We speculate that the light background 
of the figure/graph region might have confused the classifier. And this may suggest that the actual 
performance of the U-NeXt may be better than the statistical evaluation used in our experiments (i.e., 
pixel-wise accuracies and mIoU). 

Hence, we propose two ways to continuously improve the performance of this figure/graph extraction 
task.  

• First, splitting the figure/graph extraction task to a pipeline of two tasks: (1) extraction of graphics 
from the background and textual content and (2) classification of the extracted graphics to detailed 
graphic types. Such arrangement would reduce the complexity of the task.  

• Second, there is still room to improve the U-NeXt model for the extraction task directly. For example, 
the resizing layer can improve the performance of our experiment.  

At this stage, it is hard to say which of the above solutions would yield better results. They all have 
advantages. The model using a pre-trained ENP classifier converges faster; The resizing layer avoids the 
“checkerboard” issue and improves stability. And the combined class segmentation can decrease the task 
difficulty while the direct six-class segmentation can avoid introducing complexity from pipelining two 
tasks.  

Furthermore, we found that, because the classifier tries to fit the exact shape of the graphical content, 
the actual classification performance may be higher than the statistical evaluation indicated. However, 
comparing to the issues from the U-NeXt model, the major problem is that the BW ground truth has two 
widespread quality issues to be fixed. We believe that performance improvement will be observed if the 
ground truth issues can be removed.  

• Therefore, in the next iteration of this projection, work should also be done on the BW ground truth 
to fix the quality issues as well as the imbalance class issue. Specifically, increase the number of pixels 
for rare classes. 
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Figure 1 Pre-train ENP classifier performance. 

 

Figure 2 Fine-tuning experiment 1 - the baseline. 

 

Figure 3 Fine-tuning experiment 2 - using pre-trained ENP classifier. 
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Figure 4 Fine-tuning experiment 3 - using resizing layers. 

 

Figure 5 Fine-tuning experiment 4 - combined two-class segmentation. 

   
Newspaper page Ground truth U-NeXt Prediction 

Figure 6 The missing component issue 
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Newspaper page Ground truth U-NeXt Prediction 

Figure 7 The extra text content issue 

   
Newspaper page Ground truth U-NeXt Prediction 

Figure 8 Classifier tried to fit the exact shape of the graphic content 
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Progress Report - Analysis on Relationship between 
Document Difficulty Score and Visual Features 

 
10/31/2019 

Mike Pack 

 

1. Introduction 

As the 3rd iteration of Project 5 (Document Image Quality Assessment), in this experiment, we 

aim to reveal a relationship between a difficulty score and visual features. One of the expected 

beneficial outcomes from this experiment is to build a difficulty score prediction model based on 

the revealed relationship that would give the Library of Congress the capability of controlling 

and managing challenging document images, especially for human perception involved tasks 

such as transcription. 

 

2. Dataset 

The dataset used in this experiment is a subset of document images (15,592 images) collected 

from the Library of Congress archive along with corresponding difficulty score.  

The difficulty scores here—collected by Library of Congress—is the number of trials on 

transcription by human volunteers based on the intuition behind that poorly readable document 

images due to various visual artifacts (e.g., noise or ugly handwriting) would have a higher 

number of resubmissions by multiple transcription volunteers. Note here that the scores are not 

verified by the human experts. 

 

3. Experiment 1: Visual Inspection 

Before directly diving into the numerical correlation analysis between visual features and 

difficulty scores, we first visually inspect a handful of images to investigate to what extent the 

difficulty scores reflect the human perception of difficulty, particularly for transcription-like 

tasks. Particularly, we focus on finding any notable visual cues that makes distinctive differences 

between different difficulty scores. 

To this end, we sampled two images (i.e., acceptable and not acceptable for human perception of 

difficulty to the difficulty score) from two different types (i.e., handwritten and typed document 

images) for six different difficulty scores as shown in Table 1. From the inspection, we found the 

following two observations: 

 

Observation 1. The same visual feature deemed to related to the difficulty score in typed 

documents is not deemed to related to the difficulty score in handwritten documents. 
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Observation 2. It is hard to expect to find correlation between a simple standalone visual 
feature (e.g., number of characters or low contrast) and a difficulty score. 
 

For a better comprehensive understanding of the above observation, consider the following 

examples. About the first observation, for the typed documents, note that the amounts of 

contents/characters in an image (i.e., density) is subtly deemed to related with the difficulty score 

(see the rightmost column in Table 1), meanwhile it is not the case for the handwritten 

documents (see the third column in Table 1.)  

About the second observation, note that it is hard to find notable visual similarity between not 
acceptable images and acceptable images within the same difficulty score. For example, 

document images with the difficulty score of 9, not acceptable handwritten image show poor 

image quality in terms of low contrast and higher density compared to the acceptable 
handwritten image, as shown in Table 1. This is also the case in the typed document images. 

  

Table 1. Document samples for different difficulty scores. The empty cells meaning no more images exist for the 

corresponding difficulty score.  

Difficulty 
Score Not Acceptable Acceptable 

Type Handwritten Typed Handwritten Typed 

9 

 

 

Low contrast + 

comparably large 

amounts of contents, 

but ONLY 9 

 

Complicated layout 

+ decent amounts of 

contents, but ONLY 

9 

 

 

 

 

20 
 

Range-effect, but 

comparably small 

amounts of contents, 

but 20 

 

Amounts of 

characters looks 

similar to 9  
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70 

 

Small amounts of 

contents, but ONLY 

70 

 

Amounts of 

characters is way 

small 

 

 

135 

 

Low contrast, but 

relatively pretty 

writing, but 135 

 

Looks quite similar 

to the difficulty 

score of 9 or 20 

images 

 

 

350 - 
 

- 

 

Bleed-through + Ugly 

writing  

748  

(handwritten) 

 

3064  

(typed) 

 

- 
- 

 

Ugly writing + Medium 

contents 
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From the above observations, we can set the following two assumptions: 

 

Assumption 1. A feature indicating whether an image is handwritten or typed seems 

promising to be somewhat related with the difficulty score.  
 

Assumption 2. It is necessary to find more high-level visual features (e.g., expert 

knowledge-based engineered features or deep-features learned by a deep-learning model) hard to 

expect to find a correlation between a simple standalone visual feature (e.g., number of 

characters or low contrast) and the difficulty score. 
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4. Experiment 2: Pearson’s Correlation  

In this experiment, we perform numerical analysis to find a set of visual features showing a 

meaningful correlation to the difficulty score using the Pearson’s Correlation. 

A set of features here is low-level visual features obtained by relatively simple image processing 

techniques, such as contrast measure or counting the number of connected components (i.e., 

letters or characters.) 

Along with these low-level visual features, based on the above two assumptions, we added four 

additional high-level visual features: (1) prediction, (2) density, (3) number of zones, and (4) 

zone size abnormality. 

First, the prediction feature is a categorical value indicating whether the type of document image 

is handwritten, typed, or mixed. This feature is obtained by our deep-learning-based document 

type prediction model developed in our Project 2, which showed promising classification 

performance with 0.9 of f1-score (best value at 1 and worst value at 0.) 

Second, the density feature measures how dense the document is by considering the area of non-

background regions. This feature is obtained by dividing the area of non-background regions by 

the resolution of the image. 

Third, the number of zone feature represents how many zones (i.e., visually homogeneous 

regions) are presented in the image. This feature is obtained by segmenting the image by our 

deep-learning-based document segmentation model developed in our Project 1, which showed 

promising segmentation performance with 0.7 of mIoU (best value at 1 and worst value at 0.) 

Fourth, the zone size abnormality feature measures the size of zones and calculates the degree of 

outliers. This feature is obtained by counting the number of outliers in terms of zone size and 

divide it by the resolution of the image for the normalization purpose. The intuition behind this 

feature is that the output of our segmentation algorithm tends to generate the relatively regular 

and uniform size of zones for straight forward and clear document images whereas it tends to 

generate a number of abnormal size of zones (i.e., extremely small zones and big zones 

simultaneously) for noisy document images. 

After obtaining the whole visual features, before conducting Pearson’s correlation, we carry out 

histogram analysis to visually inspect how images are distributed for each visual feature, as 

shown in Figure 1. From this analysis, we can observe that some visual features that follow a 

normal distribution at a certain level, such as density, contrast, and the number of letters. Note 

that one assumption behind Pearson’s correlation is that variables (i.e., visual features) should be 

normally distributed. In this regard, we can expect that those three features are likely to show 

relatively high correlation coefficient values. We can observe that this expectation does actually 

match with the result of Pearson’s correlation, as shown in Table 2.  
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Figure 1. Distribution of visual features over 15,592 images. Note that one of the assumptions behind the Pearson’s 

correlation coefficient is that variables (i.e., visual features) should be normally distributed.  

 

 

Table 2. The size of correlation for various visual features. Note that a visual feature with asterisks (*) is high-level 

engineered features using low-level visual features. 

Visual features Size of correlation 
Density* 0.16 

Contrast 0.15 

Number of Letters 0.15 

Number of Zones* 0.10 

Zone Size Abnormality* 0.07 

Bleed-through 0.03 

Range-effect 0.02 

Prediction* 0.01 

 

It is worth noting that there is no rule for determining what size of correlation is considered 

strong, moderate, or weak. The interpretation of the coefficient depends, in part, on the topic and 

context of the study. When we are conducting research that is difficult to measure, in our case, 

the difficulty of the document image in the context of human perception, we should expect the 

correlation coefficient to be lower. With this in mind, we can interpret this result as follows. 
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First, we can observe that one of our high-level engineered visual features, density, shows the 

highest size of correlation. This implicates that if we end up finding a more sophisticatedly 

engineered visual feature, its size of correlation will superior to the low-level visual features by a 

large margin. 

 

 

Figure 2. Pairs plot to visualize scattered distribution and relationship between two visual features. The r value 

represents the size of correlation (range from -1 to 1, best value at -1 or 1, worst value at 0.) It is worth noting that 

the relationship between most of the visual features with the difficulty score is not linear (first row). Especially, the 

prediction and the difficulty score does not show any linear relationship (top right cell.) 

 

Second, a standalone prediction feature shows a very weak (or even neglectable) correlation. 

This result is expected since its distribution (see Figure 1) does not follow the normal 

Liz Lorang
117



 115 

distribution. Also, since the Pearson’s correlation is limited to reveal a “linear relationship” 

between variables, if there is a non-linear relationship between variables (see Figure 2), the size 

of correlation can be very low. In this regard, based on our Assumption 1 and 2, we expect that 

this prediction feature should be combined with other variables in a non-linear way, for example, 

by using the polynomial regression or support vector machine, to reveal the correlation to the 

difficulty score. 

 

5. Conclusion 

In this experiment, we show that both low-level and high-level engineered visual features are 

capable of capturing a certain level of correlation to the difficulty score. However, as shown in 

the pairs plot, most of the visual features rarely show any linear relationship with the difficulty 
score (see the first row in Figure 2). From this outcome, we can think of two future directions to 

reveal a more comprehensive understanding of the relationship between visual features and the 

difficulty score. 

First, instead of low-level or engineered visual features, we can explore deep features, which is 

learned by a neural network model. Because of non-linearity property inherent in the neural 

network model, the features extracted by the model are known to be significantly high-level non-

linear property. 

Second, we can explore models that are capable of dealing with non-linear data, such as 

polynomial regression, support vector machine, or neural network. These models are mapping 

the low-level features into high dimensional space, which has an effect of embedding non-

linearity property and the interaction between different low-level visual features, and we can 

expect a better understanding of the relationship between visual features and the difficulty score. 
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APPENDIX 2: WORK-IN-PROGRESS PRESENTATIONS 
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Document Images & ML

A COLLABORATORY BETWEEN THE LIBRARY OF CONGRESS AND THE 

IMAGE ANALYSIS FOR ARCHIVAL DISCOVERY (AIDA) LAB AT THE 

UNIVERSITY OF NEBRASKA, LINCOLN, NE
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Overview of Projects

q Project 1: Document Segmentation (Mike & Yi)
q Project 2: Document Type Classification (Mike & Yi)
q Project 3: Quality Assessment (Yi)
q Project 3.1: Figure/Graph Extraction from Document (Yi)
q Project 3.2: Text Extraction from Figure/Graph (Yi)
q Project 4.1: Subjective Quality Assessment (Yi) (Work In Progress)
q Project 4.2: Objective Quality Assessment (Yi) 
q Project 5: Digitization Type Differentiation: Microfilm or Scanned (Yi)
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Background | State-of-the-Art CNN models

qConvolutional Neural Network (CNN) Models (deep learning)
q Classification [Dataset; Top-1 / Top-5]
q2014, VGG-16 (Classification) [ImageNet; 74.4% / 91.9%]
q2015, ResNet-50 (Classification) [ImageNet; 77.2% / 93.3%]
q2018, ResNeXt-101 (Classification) [ImageNet; 85.1% / 97.5%]

q Segmentation [Dataset; Intersection-over-Union (IoU)]
q2015, U-net (Segmentation/Pixel-wise classification) [ISBI; 92.0%]

qSo, we now know that CNNs achieve remarkable performances in both 
classification and segmentation tasks. 
qWhat about document images then?
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Project 1: Document Segmentation 

Objectives | Find and localize Figure/Illustration/Cartoon presented in an image
Applications | metadata generation, discover-/search-ability, visualization, etc.

120
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Document Segmentation | Technical Details

Input Prediction Ground-truth

1. Convolution & Down-sampling:
understand “WHAT” is present in the image
(i.e., feature extraction)

2. Up-sampling: 
understand “WHERE” it is present in the image

3. Calculate per-pixel loss
4. Update weights between neurons
5. Repeat the process

qTraining is a process of finding the optimal value weights between artificial neurons that minimizes a pre-
defined loss function
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Document Segmentation | Dataset

Beyond Words
q Total of 2,635 image snippets from 1,562 
pages (as of 7/24/2019)

q1,027 pages with single snippet
q512 pages with multiple snippets

q Issues
qInconsistency (Figure 1)
qImprecision (Figure 2)
qData imbalance (Figure 3)

Figure 3. Number of snippets in Beyond Words. 
Note here the data imbalance

Figure 1. Example of inconsistency. Note that there are 
more than one image snippets in the left image (i.e. 
input) while there is only a single annotation in the right 
ground-truth.

Figure 2. Example of imprecision. From left to 
right: (1) ground-truth (yellow: Photograph and 
black: background) and (2) original image. Note 
here that in the ground-truth, non-photograph-

like (e.g., texts) components are included within 
the yellow rectangle region. 
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Document Segmentation | Dataset

European Historical Newspapers (ENP)
q Total of 57,339 image snippets in 500 pages

q All pages have multiple snippets

q Issues
qData imbalance
qText: 43,780
qFigure: 1,452
qLine-separator: 11,896
qTable: 221

Figure 4. Example of image (left) and ground-truth (right) from 
ENP dataset. In the ground-truth, each color represents the 
following components: (1) black: background, (2) red: text, (3) 
green: figure, (4) blue: line-separator, and (5) yellow: table.
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Document Segmentation | Experimental Results

q A U-net model trained with 
ENP dataset shows better 
segmentation performance than 
that with Beyond Words in 
terms of pixelwise-accuracy and 
IoU score
qIoU score is a commonly used 

metric to evaluate segmentation 
performance

qThe three issues—inconsistency, 
imprecision, and data 
imbalance—of Beyond Words 
dataset need to be improved for 
better use in training

q Assigning different weights per class to mitigate data imbalance did not show 
performance improvement
q Future Work:  Explore a different way of weighting strategy to mitigate a data 

imbalance problem
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Document Segmentation | Potential Applications 1

q Enrich page-level metadata by 
cataloging the types of visual 
components presented on a page

q Enrich collection-level metadata as 
well

q Visualize figures’ locations on a 
page

Figure 5. Segmentation result of ENP_500_v4 on Chronicling America image (sn92053240-19190805.jpg). Clockwise from top- left: (1) Input, (2) probability map for figure class, (3) 
detected figures in polygon, and (4) detected figures in bounding-box. In the probability map, pixels with higher probability to belong to figure class are shown with brighter color. 
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Document Segmentation | Potential Applications 2

Figure 6. Successful segmentation result of ENP_500_v4 on 
book/printed material 
(https://www.loc.gov/resource/rbc0001.2013rosen0051/?sp=37).

Figure 7. Failure segmentation result of ENP_500_v4 on 
book/printed material 
(https://cdn.loc.gov/service/rbc/rbc0001/2010/2010rosen0073/0
005v.jpg). Note that there is light drawing or stamps (marked in 
green arrows) on the false positive regions.
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Document Segmentation | Conclusions

q As a preliminary experiment, a state-of-the-art CNN model (i.e., U-
net) shows promising segmentation performance on ENP document 
image dataset, 
q There is still room for improvement with more sophisticated training 

strategies (e.g., weighted training, augmentation, etc.)

q To make Beyond Words dataset more as a valuable training 
resource for machine learning researchers, we need to address the 
following issues:
q Consistency
q Precision of the coordinates of regions
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Project 2: Document Type Classification 

Objectives | (1) Classify a given image into one of Handwritten/Typed/Mixed type; (2) 
Classify a given image into one of Scanned/Microfilmed

Applications | metadata generation, discover-/search-ability, cataloging, etc.
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Liz Lorang
131



Document Type Classification | Technical Details

Figure 8. Architecture of original VGG-16. In 
our project, the last softmax layer is 
adjusted to have a shape of 3, which is the 
number of our target classes; handwritten, 
typed, and mixed  

Note that we do not need up-sampling in this task, 

since WHERE is not our concern

q A simple VGG-16 is used (Figure 8)
q Afzal et al. reported that most of state-of-the-art CNN 

models yielded around 89% of accuracy on document 
image classification task

q Transfer learning?
qWhy don’t we initialize our model’s weights from a 

model that has been already trained on a large-scale 
data, such as ImageNet (about 14M images)?

qWhy? (1) training a model from the scratch (i.e., the 
value of weights between neurons are initialized to 
random number) takes too much time; (2) we have too 
small a dataset to train a model

Afzal, M. Z., Kölsch, A., Ahmed, S., & Liwicki, M. (2017, November). Cutting the error by half: Investigation of very deep CNN and advanced training strategies for document image classification. In 2017 14th IAPR International Conference on Document Analysis 

and Recognition (ICDAR)(Vol. 1, pp. 883-888). IEEE.
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Document Type Classification | Datasets

qWe have two datasets:
qExperiment 1: RVL-CDIP (400,000 document images with 16 different balanced 

classes); publicly available
qExperiment 2: suffrage_1002 (1,002 document images with 3 different 

balanced classes); manually compiled from By the People: Suffrage campaign 
(Table 1)

Table 1. Configuration of suffrage_1002 dataset.

Figure 9. Example document images from each 16 different classes 130

Liz Lorang
133



Document Type Classification | Datasets

Figure 9. Example document images from each 16 different classes in 
RVL_CDIP dataset

Figure 10. Example document images from each 3 different classes in 
suffrage_1002 dataset
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Document Type Classification | Experimental Results

q Experiment 1:  We obtained a model trained on a large-scale document image 
dataset, RVL-CDIP with promising classification performance, as shown in Table 1
qImplication:  Features learned from natural images (ImageNet) are general enough to 

apply to document images
qNow we can utilize this model by retraining it with our own suffrage_1002 dataset in 

Experiment 2

q Experiment 2:  The retrained model shows even better classification performance, 
as shown in Table 2
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Document Type Classification | Conclusions

q In both experiments, the state-of-the-art CNN 
model is capable of classifying document images 
with promising performance
q Potential Applications: help tagging an image type

q A main challenge:  classifying a mixed type 
document image, as shown in Figure 11 
q Future Work:  Perform a confidence level analysis 

to mitigate this problem

q Future Work:  We expect that the classification 
performance can be further improved with a 
larger large-scale dataset

Afzal, M. Z., Kölsch, A., Ahmed, S., & Liwicki, M. (2017, November). Cutting the error by half: Investigation of very deep cnn and advanced training strategies 
for document image classification. In 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)(Vol. 1, pp. 883-888). IEEE.

Figure 11. Failure prediction cases. On the left example, a typed 
region is relatively smaller than that of handwriting. On the right 
example, a handwriting region is relatively smaller than that of 
typing.
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Project 3.1: Figure/Graph Extraction from 

Document 

Objectives | Find and localize Figure/Graph in a document image
Applications | Graph retrieval, document segmentation based on content type
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Figure/Graph Extraction from Document | Technical Details

An FCN (U-NeXt) is used
q U-NeXt combines ResNeXt and U-Net
q ResNeXt101_64x4d

q Why ResNeXt101_64x4d?
q Current state-of-art
q Accessible pre-trained model

qTransfer learning
q ResNeXt101_64x4d
q Number of parameters: 
q114.4 million à 32.8 million
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Figure/Graph Extraction from Document| Datasets

q ENP collection: European newspaper collection
qA subset used for the International Conference on Document Analysis and 

Recognition competition

q Beyond Word collection: Transcribed collection
q But cannot be used for training directly …
q Problem 1: missing figures in ground-truth
q Problem 2: inaccurate ground-truth
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Figure/Graph Extraction from Document| Datasets: ENP

Document Image Ground-truth
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Figure/Graph Extraction from Document|Datasets: Beyond Words

Document Image Ground-truth

Missing figure
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Figure/Graph Extraction from Document| Preliminary Results

q Transfer parameters from pre-trained ResNeXt101 64x4d
q Trained on ENP dataset

Document Image Ground truth Prediction
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Figure/Graph Extraction from Document| Conclusions

q Promising preliminary results

q Potential applications
q Segmentation based on content type to increase item-level accessibility
q Retrieval of figures/graphs for further study

q Challenges
q U-NeXt still needs more iterations of training
q Preliminary training indicates that tables may be the hardest type to extract
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Figure/Graph Extraction from Document| Preliminary Results

Document Image Ground truth Prediction
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Project 3.2: Text Extraction from 

Figure/Graph 

Objectives | Extract texts from figure/graph
Applications | Metadata generation, OCR for figure/graph caption
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Text Extraction from Figure/Graph | Technical Details

EAST text detector
q EAST: Efficient and Accurate Scene Text 

detector
q HyperNet + U-Net 
q Detect texts in graphic images in any 

direction
Why applicable?
q figures/illustrations are snippets of a graphic 

region
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Text Extraction from Figure/Graph| Preliminary Results

q Performance on detecting texts in newspaper 
figure/graph is good

q Texts location is recordedDetected Texts
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Text Extraction from Figure/Graph | Conclusions

q Promising preliminary results

q Potential application
q Perform OCR on detected text regions for higher accuracy
q Extract OCR-ed words in detected text regions as metadata
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Project 4.1: Subjective Quality 

Assessment 

Objectives | Access document images based on human perception
Applications | Providing metadata based on human visual perception

WORK IN PROGRESS
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Subjective Quality Assessment | Proposal

q Adding an interface to allow users to classify the quality of document 
images
q No need for verbal annotation

q A simple interface with
q A drop box having five-level rating scores for MOS (i.e., 5-Excellent, 4-Good, 3-

Fair, 2-Poor, and 1-Bad)
q Buttons, if detailed aspects such as contrast, range-effect, background-cleanness, 

and content density are needed

WORK IN PROGRESS
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Subjective Quality Assessment | Benefits

q A human perception-based document image quality assessment 
(DIQA) database that can support further studies and experiments 
such as machine learning model training

q A publicly available database can draw attention to more research 
teams for research competition in academia

q Trained machine learning mode could enhance the filter or query 
search in the new UI of Beyond Word to sort images based on their 
quality

WORK IN PROGRESS

148

Liz Lorang
151



Project 4.2: Objective Quality 

Assessment 

Objectives | Analyze image quality of the civil war collection By the People
Applications | Providing quality scores for machine reading on four criteria: (1) 

skewness, (2) contrast, (3) range-effect, and (4) bleed-through
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Objective Quality Assessment | Technical Details

q Objective quality assessment on four criteria
q Skewness, Contrast, Range-effect, Bleed-through

q Based on the DIQA programs developed at Aida @ UNL (previously tested 

using Chronicling America’s repository of archived newspaper pages

q Not directly machine learning related

q Why?
q Help identify images that need pre-processing
q Reduce unnecessary workload for pre-processing images
q Indicate general qualities of the dataset
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Objective Quality Assessment | Datasets

q The Civil War collection within By the People:
q36003 images were downloaded
q35990 images passed the DIQA program
q 13 images failed as they barely had texts (see examples later)
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Objective Quality Assessment | Experimental Results
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Objective Quality Assessment | Experimental Results
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Objective Quality Assessment | Experimental Results
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Objective Quality Assessment | Experimental Results
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Objective Quality Assessment | Experimental Results
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Objective Quality Assessment | Observations

qMust say something about your assessment.  Good?  Bad?  What about the 
images?

157

Liz Lorang
160



Objective Quality Assessment | Potential Issues

q Numerous images with yellowish 
background and faded inks

q They are hard to read even to human eye
q Contrast could be lowered
q Skewness could be almost impossible to 

compute
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Objective Quality Assessment | Potential Issues

q Numerous images are covers or labels 
of a series

q These images are largely blank
q Contrast is poor
q Histogram equalization might be able to 

enhance the quality 
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Objective Quality Assessment | Potential Issues

q There are color-inverted images from 
microfilm
q Renders bleed-through assessment useless
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Project 5: Digitization Type 

Differentiation: Microfilm or Scanned

Objectives | Recognize if an image digitized from Scanned or Microfilm

Applications | Metadata generation, pre-processing policy selection
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Digitization Type Differentiation | Technical Details

q Pre-trained ResNeXt is adopted

q Attached output layers are two dense layers with a 1D output vector

q The pre-trained ResNeXt can classify images to 1000 different 
categories
q The pre-trained ResNeXt is a good feature extractor

qNumber of parameters: 94.1 million à 12.6 million
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Digitization Type Differentiation | Datasets

q Created from the Civil War collection within By the People

q A manually created database by randomly choosing 600 images on scanned 
materials and 600 images on microfilm materials

q The randomization was performed by shuffling the entire list of 36,003 images in 
the collection

q The randomization ensured that images in the collection have a fair chance to be 
chosen

q The randomization seed was fixed to ensure the experiments can be reproduced
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Digitization Type Differentiation | Datasets

q Rough estimate:  Based on 10,508 
images that was processed, ratio of 
images from microfilm to scanned 
materials is about 1:16
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Digitization Type Differentiation | Experimental Results

q With pre-trained ResNeXt, 
qIt only took one iteration to reach more than 90% accuracy on training set, and
qIt only took two iterations to reach more than 90% accuracy on testing set 
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40.00%
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80.00%

100.00%

1 2 3 4 5 6 7 8 9 10

train accuracy test accuray
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Digitization Type Differentiation | Experimental Results

qThe best test iteration result was able to 100% correctly classify all images 

Ground Truth

Scanned Microfilm

Pr
ed

ic
tio

n Scanned 60 0

Microfilm 0 60
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Digitization Type Differentiation | Conclusions

q Existing pre-trained model can be easily extended to more 
designated tasks

q The extended model only need a small set of labeled data to reach 
near-perfect performance in this task

q Automated digitization type differentiation is readily achievable.
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Digitization Type Differentiation | Tips on Choosing …

q How to choose pre-trained model from the “zoo” (or the ”kitchen”)?

Task Type Model
Type differentiation/classification, with limited computing power Mobile Net

Type differentiation/classification, with fair amount of computing 
power

ResNet, ResNeXt

Type differentiation/classification, with good amount of 
computing power

VGG Network, Inception

Task needs to locate or extract object/figure/graph, based on the 
amount of computing power

Combine a U-shaped 
network

Task needs to refine extracted location, and locations may be 
overlapped

HyperNet

168

Liz Lorang
171



Questions ?

Thank you very much for your participation.  
Thanks to Library of Congress + UNL Collaboratory

169

Liz Lorang
172



Subjective Quality Assessment | Technical Details

q Fine tuning pre-trained U-NeXt in Project 1

q Difference:  DIQA need only high-level score on image quality
q Instead of 2D matrix output, subjective quality assessment only need 1D vector
q Elements of the 1D output are image quality scores, such as Mean Opinion 

Score

WORK IN PROGRESS

170

Liz Lorang
173



Subjective Quality Assessment | Datasets

q Machine Learning, especially for deep learning, requires large amounts of 
labeled data for training

q Current existing quality assessment databases contain only quality scores 
for machine perception 
q Previous Aida @ UNL work: Document Image Quality Assessment (DIQA) for 

Chronicling America newspapers

q Challenge
q Lack of human perception-based DIQA database
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Digital Libraries, 
Intelligent Data Analytics, 
and Augmented 
Description: 
A Demonstration Project

A COLLABORATORY BETWEEN 
THE LIBRARY OF CONGRESS 
AND THE IMAGE ANALYSIS 
FOR ARCHIVAL DISCOVERY 

(AIDA) LAB AT THE UNIVERSITY 
OF NEBRASKA, LINCOLN, NE

Liz Lorang (faculty)
Leen-Kiat Soh (faculty)

Yi Liu (PhD student)
Chulwoo Pack (PhD student)
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framing

1. Aida research team and background for the 
demonstration project
2. Broad outlines of “Digital Libraries, Intelligent Data 
Analytics, and Augmented Description”
3. What has changed for us as a research team over the 
collaboration and why
4. Deliverables of our work
5. Some things we’re thinking about for “What next”?
6. Deep-dive into the explorations (Leen-Kiat, Yi, and 
Mike)

173

Liz Lorang
176



background
o 2014: Our original goal was to find poetry 

in historic newspapers and create a corpus 
of poetry for further analysis.

o Since 2016: IMLS-funded project to extend 
Aida's software across a more diverse 
range of digitized newspapers and textual 
forms and assess the broader potential of 
image analysis as a methodology for 
information classification, identification, 
discovery, and retrieval in digital libraries.

o Reports, codes, and datasets are linked 
from projectaida.org
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background

o In our proposal to IMLS, we anticipated that 
“image processing approaches and intelligent 
classifiers, such as those we are developing, 
are likely to become part of the standard 
toolkit of archivists.”

o As part of the Oceanic Exchanges Digging into 
Data team, we consider how the models we’re 
developing could become part of 
“downstream” workflows.
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Takeaways

o Even content of a single type (e.g., newspapers) can be 
incredibly diverse, with implications for generalizing 
approaches

o There may be trade-off between generalizability and 
effectiveness

o We need to better understand the materials 
themselves, as well as other intermediary processes 
through digitization, to inform our approaches.

176

Liz Lorang
179



broad outlines

Digital Libraries, Intelligent Data Analytics, and 
Augmented Description

Three broad goals as framed in proposal:
1. Develop and investigate the viability and feasibility 
of textual and image-based data analytics approaches 
to support and facilitate discovery 
2. Understand technical tools and requirements for 
the Library of Congress to improve access and 
discovery of its digital collections 
3. Enable the Library of Congress to plan for future 
technical possibilities 
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broad outlines
We posed a lot of questions in our plan for collaborating 
with the Library of Congress. Just a few . . . .

o What are the various types of information, files, 
and structures that researchers want access to? 

o How can more of this information be made 
available to researchers in ways that are 
meaningful to them, including in bulk formats? 

o What types of accuracy are needed in digital 
collections to make them usable to researchers 
asking a range of questions? What levels of 
accuracy do different types of processes and 
research questions require?
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what has changed

July 2019 kick-off meeting as a bit of a turning point . . . 

What would help the LC manage the material and serve it to 
users better?

What might we learn about size and condition of materials?
What are the inadvertent barriers we are creating? Where are 

we roping off next potential steps for researchers?
Can we identify printed materials in handwritten manuscript 

collections?
What are the internal needs and questions?
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deliverables
Real-time reports, completed throughout 
project

Code and code documentation

Curated datasets

Final white paper
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what’s next

o usable, operationally-significant machine 
learning;

o engaging, research-facilitating machine 
learning; and

o socially, culturally responsible machine 
learning

in cultural heritage digital libraries and 
organizations.
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Digital Libraries, 
Intelligent Data Analytics, 

And Augmented Description: 
A Demonstration Project

A COLLABORATORY BETWEEN 
THE LIBRARY OF CONGRESS 
AND THE IMAGE ANALYSIS 
FOR ARCHIVAL DISCOVERY 
(AIDA) LAB AT THE UNIVERSITY 
OF NEBRASKA, LINCOLN, NE

Liz Lorang (faculty)
Leen-Kiat Soh (faculty)
Yi Liu (PhD student)
Chulwoo Pack (PhD student)
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Collaborative research project between the Library of Congress and 
the Aida digital libraries research team at the University of Nebraska

5-month applied research project with the following goals:
◦ develop and investigate the viability and feasibility of textual and image-

based data analytics approaches to support and facilitate discovery
◦ understand technical tools and requirements for the Library of Congress to 

improve access and discovery of its digital collections
◦ enable the Library of Congress to plan for improved applications and 

technical capacity as well as future innovations

projectaida.orgIntroduction
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Where 
We 
Were
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Project 4.  Advanced Quality 
Assessment

Project 2. Figure/Graph 
Extraction

completed

completed

Project 5.  Digitization Type 
Differentiation: Microfilm or Scanned completed

Project 1. Document Clustering
1st Iteration 2nd Iteration

186

Liz Lorang
189



Project 1. Document Clustering

Objectives | Find and localize Figure/Illustration/Cartoon presented in an image
Applications | metadata generation, discover-/search-ability, visualization, etc.

Project 1: Document Segmentation
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• What we did: 
• Used dhSegment [1] to localize texts, figures, layout borders, and tables

• Datasets used: 481 images from external dataset European historical 
newspapers [2]

• Results: pixel-wise accuracy = 91%; mIoU = 69%

[1] Oliveira, Sofia Ares, Benoit Seguin, and Frederic Kaplan. "dhSegment: A generic deep-learning approach for document segmentation." 2018 16th International Conference 
on Frontiers in Handwriting Recognition (ICFHR). IEEE, 2018.   [2] https://www.primaresearch.org/datasets/ENP

PredictionInput

Encode

Decode
High-level 
visual features

Project 1 Document Segmentation | Where We Were
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• Implications
• ResNet, a feature extractor in dhSegment, is capable of encoding a 

whole image down to a set of high-level visual features effectively 
and efficiently

• Visually similar document images likely have similar high-level visual 
features

• Question: In an effectively clustered space of high-level visual features, would 
document images in the same cluster share similar visual metadata?

Project 1 Document Segmentation | Where We Were
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Clustering

t-SNE

Project 1 Document Clustering | 2nd Iteration
• Use dhSegment to extract a set of high-level features
• Cluster the features using t-SNE [3]
• Investigate clustered datapoints (images) to inspect similarity

• Results:  Same-cluster document images share similar visual cues (e.g., 
brightness, density, existence of figures, etc.) and those in different 
clusters do not

[3]. Maaten, Laurens van der, and Geoffrey Hinton. "Visualizing data using t-SNE." Journal of machine learning research 9.Nov (2008): 2579-2605.
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Project 1 Document Clustering | Conclusions

• Limitation    Solution model is supervised—based on the domain of 
training images (i.e., newspaper/typed), results might not transfer to 
other types of document images (e.g., letter/handwritten) 

• Next Iteration   Explore unsupervised deep-learning model to build a more 
generic/universal solution 

• Future Directions   A document cluster model can enrich high-level 
metadata and improve crowd-sourcing operations

◦ Suggest metadata tags for crowd-sourcing process and receive feedback
◦ Suggest visually similar document images matching user interests and receive 

feedback

Idea 1

Idea 2
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Project 2: Figure/Graph Extraction
Objectives | Find and localize Figure/Illustration/Cartoon presented in an image
Applications | metadata generation, discover-/search-ability, visualization, etc.

Project 2. Figure/Graph 
Extraction

completed
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Project 2 Figure/Graph Extraction |
Where We Were

• What we did:  Used dhSegment [4] to extract 
figure/graph regions
• dhSegment is based on ResNet [5] 

• Datasets used:  1,532 images from the Beyond 
Words collection

• Results: pixel-wise accuracy = 88%;  mIoU = 26%

[4] S. Ares Oliveira, B. Seguin and F. Kaplan, "dhSegment: A Generic Deep-Learning Approach for Document Segmentation," 2018 16th ICFHR, 2018, pp. 7-12.
[5] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conf. on CVPR, 2016, pp. 770-778. 193
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Project 2 Figure/Graph Extraction |
Where We Were

• Implications 
• Due to poor performance on mIoU–possibly due to poor feature 

extraction in ResNet–we proposed to use a more advanced version of 
dhSegment called U-NeXt that has a stronger feature extractor

• Automated solution to extract figures/graphs is promising
• Enrich page-level metadata by cataloging the types of visual components 

• Enrich item-level metadata by extracting texts in figure/graph regions

[4] S. Ares Oliveira, B. Seguin and F. Kaplan, "dhSegment: A Generic Deep-Learning Approach for Document Segmentation," 2018 16th ICFHR, 2018, pp. 7-12.
[5] K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recognition," 2016 IEEE Conf. on CVPR, 2016, pp. 770-778. 194
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Project 2 Figure/Graph Extraction | 2nd Iteration

• Used U-NeXt to extract figure/graph regions
• U-NeXt uses ResNeXt [6] 

• Datasets used: 1,532 images from Beyond Words collection

• Results: pixel-wise accuracy = 87%; mIoU = 38%

[6] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated Residual Transformations for Deep Neural Networks," 2017 IEEE Conf. on CVPR, 2017, pp. 5987-5995.

• Implications 
• 1st vs. 2nd iterations: U-NeXt showed noticeably higher 

mIoU while maintaining almost the same pixel-wise 
accuracy

• U-NeXt’s ResNeXt is a better feature extractor than 
dhSegment’s ResNet
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Project 2 Figure/Graph Extraction | Another Implication

• Implications
• Low mIoU indicates low regional coincidence rate, meaning extracted 

regions only partially matching the ground truth regions
• … Visual inspection to investigate …

Why are these 
values so much 
lower than pixel-
wise accuracy?
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Project 2 Figure/Graph Extraction | Visual Inspection

Findings:  Issues with ground truth
• Ground truth missing regions

◦ Figure/graph in the document missing from 
ground truth but our approach captured 
missing regions

Ground truth including incorrect regions
◦ Ground truth includes incorrect textual 

content and our approach did not include 
such textual content

Ground truth not fitting form
◦ Our approach tried to fit the exact shape of 

the figure/graph region

197

Liz Lorang
200



Project 2 Figure/Graph Extraction | Conclusions

• Results  Actual performance could be better than mIoU indicated, 
because of issues in the accuracy of ground truth

• Challenges  Ground truth (in)accuracy causes performance loss but 
ground truth with high accuracy is expensive 

• Next Iteration  Build better ground truth only for a small subset for 
testing and benchmarking purposes 

• Future Directions  Combining crowd-sourcing with the U-NeXt model, a 
loop-based system could be built where

◦ Crowd-sourcing operations receive labeled data from the U-NeXt model, users 
revise labels, the U-NeXt model improves its predictions based on revision, and 
repeats

Idea 1
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Project 4.  Advanced Quality 
Assessmentcompleted

Project 4: Quality Assessment
Objectives | Analyze image quality of the civil war collection By the People

Applications | metadata generation, discover-/search-ability, visualization, etc.
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Project 4 Quality Assessment | 
Where We Were
• What we did:  Computationally analyzed images 

for overall image properties
• Datasets used:  36,003 images in the civil war 

collection within By the People
• Implications

• A set of image properties (e.g., contrast, range-effect, 
and bleed-through) can be assessed computationally to 
understand overall visual attributes of dataset

• Further investigating relationship (if any) between 
various visual features and human perception of 
difficulty (i.e., difficulty score collected by the Library of 
Congress)
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Low contrastBleed-through Skewness Range-effect

A large-scale 
dataset of images
with labels

Deep-
learning 
model

Training

Prediction

Pixelwise 
Classification

Image-wise 
Classification

Typed

Project 4 Advanced Quality Assessment | 2nd Iteration

• Collect a set of visual quality and visual structural 
features
• 1st Iteration Project 1: Segmented components (e.g., 

number of zones)
• 1st Iteration Project 2: Type of document image (e.g., 

handwritten, typed, mixed)
• 1st Iteration Project 4: Quality of image (e.g., contrast, 

range-effect, bleed-through)

• New:  Image processing-based connected component 
analysis (e.g., the number of characters)

• New:  density measures image’s compactness
• New:  zone size abnormality measures zone size irregularity

• Compute Pearson’s correlation between each  
visual feature and the difficulty score
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Project 4 Advanced Quality Assessment | Results

• Results
• Correlation in general is low, < 0.2

• No features investigated has linear 
correlation with the difficulty score

• Density, contrast, the number of 
characters show the highest 
correlation with the difficulty score

Visual features Correlation
Density* 0.17
Contrast 0.15

Number of Characters 0.15
Number of Zones 0.10

Zone Size Abnormality* 0.07
Bleed-through 0.03
Range-effect 0.02

Type Prediction 0.01

Correlation between each visual feature and the difficulty 
score. Note that visual features with asterisks (*) denote 
composite visual features using several visual structural 

features
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Project 4 Advanced Quality Assessment | Another Thought

• Observations
• (Left) Only few 

visual features 
are normally 
distributed 

• (Right) Most 
relationships 
are not linear

• Implication
• Explore more complex, non-linear models to capture relationships between visual 

features and the difficulty score
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Project 4 Advanced Quality Assessment | Conclusions
• Results Using Pearson’s correlation was not sufficient to capture 

relationship between visual features and difficulty score
• Challenges   Difficulty score itself may not match human perception of 

difficulty as complex non-linear relationships exist among visual features
• Next Iteration  

• Analyze correlation between deep visual feature (Project 1, latent space) and the 
difficulty score

• Explore non-linear models (e.g., polynomial regression, SVM, neural network, etc.) 

• Future Directions
◦ Develop a difficulty assessment model to inform crowd-sourcing operations, e.g., 

prioritizing images to be transcribed
◦ Assess more accurate and detailed difficulty score (e.g., elicit from users)Idea 3

Idea 2
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Project 5: Digitization Type Differentiation 
Microfilm or Scanned

Objectives | Recognize if an image digitized from Scanned or Microfilm
Applications | Metadata generation, pre-processing policy selection

Project 5.  Digitization Type 
Differentiation: Microfilm or Scanned completed

completed

205

Liz Lorang
208



Project 5: Digitization Type Differentiation Microfilm or Scanned | 
Where We Were
• What we did:  Used ResNeXt [6] (a deep learning method) 

to differentiate document images digitized from microfilm 
or scanning processes

• Datasets used:  1,200 images from the Civil War collection 
on By The People repository 
• Dataset was manually built by randomly choosing 600 

scanned materials and 600 microfilm materials
• Randomization ensured each image a fair chance to be 

chosen

• Results: 100% accurate for 120 test samples
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Project 5: Digitization Type Differentiation Microfilm or Scanned | 
Where We Were | Project 3
• What we did:  Used VGG-16 [12] (a deep learning method) to 

differentiate document images to handwritten, typed or mixed images
• Datasets used: 1,002 images from the Suffrage campaign collection from the 

By The People repository 

• Results: 89.90% accurate 
for 99 test samples

[12] Afzal, M. Z., Kölsch, A., Ahmed, S., & Liwicki, M. (2017, November). Cutting the 
error by half: Investigation of very deep CNN and advanced training strategies for 
document image classification. In 2017 14th IAPR International Conference on 
Document Analysis and Recognition (ICDAR)(Vol. 1, pp. 883-888). IEEE.
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Project 5: Digitization Type Differentiation Microfilm or Scanned | 
Where We Were

• Implications 
• Almost perfect accuracy might be too good to be true—possibly due to the bias in 

the small sample dataset—we proposed to compare the classified ratio of 
microfilm to scanned materials with the ground truth ratio of microfilm to 
scanned materials in the entire Civil War collection to evaluate our approach 
comprehensively

• Digitization type differentiation using deep learning is promising
• Enrich metadata tagging by recognizing digitization type automatically

• Note:  Based on 10,508 visually inspected images, “ground truth” ratio of 
microfilm to scanned materials is about 1:16 
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Project 5: Digitization Type Differentiation Microfilm or Scanned | 
2nd Iteration

• Processing additional document images
• The entire Civil War collection on By The People repository (36,103 images)
• 3% images involved in training
• Ground truth Microfilm : Scanned ratio = 1 : 16
• Classified Microfilm : Scanned ratio = 1 : 11.74

• Implication
• Classifier labeled more images as microfilm

• Why?
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Project 5: Digitization Type Differentiation Microfilm or Scanned | 
2nd Iteration
• Findings:  Issues with ground truth
• Missing scenarios in training data

◦ Largely “blank” document images

◦ Poor contrast document images 

◦ Not a document image
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Project 5: Digitization Type Differentiation Microfilm or Scanned | 
Conclusions

• Results Automated type differentiation is viable and 
computationally cheap, and our approach can be applied to a 
large collection 
• Our approach had never seen microfilm photos in the training set, but it 

made the correct classification

• Challenges   Small training sets may not contain some scenarios

• Next Iteration   
• Sample dataset comprehensively to identify all possible scenarios and add 

to the training dataset
• Perform color inversion for microfilm images
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Project 5: Digitization Type Differentiation Microfilm or Scanned | 
Conclusions

• Future Direction
◦ Add search by “digitization type” for query parameters

◦ Explore data programming tool (e.g., Snorkel [7]) that uses heuristics rules to 
generate pseudo-ground truth

◦ Could reduce human effort for ground truth construction

[7] A. J. Ratner, C. M. De Sa, S. Wu, D. Selsam, and C. Re, “Data ´ programming: Creating large training sets, quickly,” in Advances in neural information processing systems, 2016, pp. 
3567–3575.

Idea 4
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Q&A
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Low-Cost Groundtruthing

Informed Crowdsourcing

2nd Iteration Future Direction

Deep Learning

Idea 3

Idea 4

Idea 5

Idea 2

Idea 1

Enriched Metadata

Benchmarking
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Objectives | Allow machine learning models to cumulatively improve their performance
Motivations | The need for an effective ground truthing approach for hard tasks

Informed Crowdsourcing

Idea 1

Informed Crowdsourcing
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Idea 1: Informed Crowdsourcing | Advantages

• Crowdsourcing involves a large pool of users who provide inputs, which 
improve:
• Quality
• Flexibility
• Scalability
• Diversity 

• Above benefits make crowdsourcing a good approach to collect training 
data for machine learning models

• The same properties a good training 
dataset should have
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Idea 1: Informed Crowdsourcing | Motivation

• Widely used
• It is not a secret that companies collect user data to improve their product

• E.g., Google’s search engine

• Not limited to task with deterministic heuristic rules
• i.e., crowdsourcing can deal with problems involving high-level understanding, 

such as metadata defining and document layout analysis

• Can support ground truth construction without deterministic rules
• Ground truth with deterministic rules, meaning that, the labeling process can be 

described as a yes or no question
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Idea 1: Informed Crowdsourcing | Potential Application

• Recall Project 2
• The three ground truth issues for figure/graph extraction

• (1) Missing regions; (2) incorrect regions; (3) inaccurate region shapes
• By taking advantage of the large pool of people, crowdsourcing could refine the 

ground truth with much less labor-cost, at the sometime, with good quality

Crowdsourcing Machine Learning

Provide Extracted 
Figure/Graph

Provide Ground Truth 
Training Accurate 
Figure/Graph Extractor

• With informed crowdsourcing, a loop-
based system could be built to improve 
our U-NeXt models
• Crowd-sourcing operations receive labeled 

data from the U-NeXt model, users revise 
labels, the U-NeXt model improves its 
predictions based on revision, and repeats
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Objectives | Improve accessibility and searchability of digital libraries
Motivations | The need for enriched any-level searchability

Enriched Metadata

Idea 2

Enriched Metadata
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Idea 2: Enriched Metadata | Different Needs
• Metadata is key for improving Discoverability and  Accessibility!

• From internal (Upstream):  “How to maintain items effectively and efficiently?”

• Focus of data administrators: Item cataloging/prioritizing strategy

• From external (Downstream):  “Can I find the right items conveniently that I am 
looking for?”

• Focus of general users:  page-level documents; basic metadata (e.g., “retrieve all 
document images from newspapers published 1836-1840”) 

• Focus of researchers:  batch-level documents (benchmark datasets); enriched 
metadata is essential (e.g., “retrieve all document images that are of low contrast”)
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Idea 2: Enriched Metadata | Types of Metadata

• Basic metadata (Easily obtainable at low cost)
• Image resolution
• Generated data/time
• Poor quality OCR

• Enriched metadata (Not easily obtainable automatically; requires high 
cost)
• Keywords tagged by crowdsourcing
• High quality OCR
• (Project 1) Structural information (e.g., location of articles)
• Logical relationships between substructures (e.g., reading-order)
• (Project 4) Objective/subjective visual quality (e.g., contrast, noise, range 

effects)

Bailer W. et al. (2008) Multimedia Metadata Standards. In: Furht B. (eds) Encyclopedia of Multimedia. Springer, Boston, MA 221
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Metadata

Idea 2: Enriched Metadata | Ecosystem

Crowdsourcing ResearchersImage

Documents
Materials

Scanning Feedback

Library of Congress

Machine
Learning

Basic

Metadata-based 
Prioritization/Cataloging Strategies:

Option 1. Cross Collection tag-based
Option 2. Visual Quality-based 

• Tag Suggestion
• Document Recommendation

Benchmark 
Datasets

Studies on 
Collections

Enriched Metadata
• Item-level (Projects 1, 3)
• Page-level (Projects 2, 4, 5)
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Objectives | Create standard databases to evaluate approaches
Motivations | A shared database can encourage systematic rigorous research towards 

finding better approaches

Benchmark Datasets

Idea 3

Benchmarking
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Idea 3: Benchmark Datasets | Data, Data, Data!

“We don’t have better algorithms. 
We just have more data.” 

– Peter Norvig

Halevy, Alon, Peter Norvig, and Fernando Pereira. "The unreasonable effectiveness of data." (2009).

• ImageNet?
• ImageNet is a large-scale natural scene 

image dataset 
• ImageNet Challenge boosts image and 

vision research field vastly
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Idea 3: Benchmark Datasets | “DocuNet”
• Why not “DocuNet”?

• Existing document image datasets have following constraints
• Datasets are NOT publicly available
• Volume is relatively small (e.g., less than 1,000 images)

• One effective way to encourage image/vision/ML researchers to delve 
into document analysis field

• What do we need?
• Ground-truth (e.g., document types, coordinates of article regions, etc.)
• Openness
• Diversity & Balance (e.g., different document types should be 

comprehensively covered and equally distributed)
• Clear objectives (e.g., segmentation, classification, clustering, etc.)

Idea 4
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Objectives | Build ground truth for machine learning models in a low-cost fashion
Motivations | Having subject matter experts' hand-label data is expensive

Low-Cost Groundtruthing

Idea 4

Low-Cost Groundtruthing
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Idea 4: Low-Cost Groundtruthing | Traditional Approach

• Groundtruthing is a process of collecting labeled data for machine learning 
training based on observation
• E.g., the process of collecting the 1,200 images for Project 5

• Traditional approach:  Having subject matter experts' hand-label data
• Advantages:  Accurate
• Disadvantages:   Time and labor intensive
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Idea 4: Low-Cost Groundtruthing | Motivation

• The training process of machine learning approaches typically needs lots 
of labeled data
• E.g., One of the most comprehensive benchmarking dataset, ImageNet[11], 

contains ‭1,431,167‬ labeled images

• Both the hand-labeling processes and finding subject matter experts are 
expensive
• E.g., when building the ground truth for our Project 5

• Consulting experts
• More than 4 hours
• Only a 1,200-image groundtruth was built

• Need to get labeled data cheaper and faster

[11] J. Deng, W. Dong, R. Socher, L. Li, Kai Li and Li Fei-Fei, "ImageNet: A large-scale hierarchical image database," 2009 IEEE Conference on Computer Vision and Pattern 
Recognition, Miami, FL, 2009, pp. 248-255. 228
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Idea 4: Low-Cost Groundtruthing | A Modern Approach

• Weak supervision [12]
• Computers label data using heuristic rules, constraints, distributions, 

or/and invariances of the dataset

• Instead of having experts to hand-label data, only need to consult an 
expert on how to label data

• Advantages:  Computers take care of the heavy-lifting of data-labeling

• Disadvantages:  Less accurate groundtruth (but could still produce very 
accurate classifier!)

[12] Ratner, A., Bach, S., Varma, P. and Ré, C., 2017. Weak Supervision: The New Programming Paradigm for Machine Learning. 229
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Idea 4: Low-Cost Groundtruthing | An Example

• Snorkel [7]
• A system for programmatically building and managing training datasets

• Cheap
• Develop a labeling program based on heuristic rules

• Fast
• Develop training datasets in hours or days rather than hand-labeling them 

over weeks or months
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Idea 4: Low-Cost Groundtruthing | Potential Application

• Recall our Project 5
• Performance was reduced due to missing scenarios in the groundtruth

• Only a little more than 10,000 images were inspected for the groundtruth construction à
likely more than just three scenario types that were not included for training

• With Snorkel
• By converting heuristic rules into a program, one could reduce a human visual 

labeling task to less than a second
• Example heuristic rule:  any images with colors are scanned materials

• Resultant “groundtruth” data could be noisy …
• … but contain significantly more document images with significantly more 

different scenarios, especially needed to train deep learning models
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Objectives | Apply deep learning models to analyze documents in digital library
Motivations | Different deep learning models have different properties appropriate for different 

tasks

Applying Deep Learning

Idea 5

Applying Deep Learning

232

Liz Lorang
235



Idea 5: Applying Deep Learning | 
Choose Deep Learn Model By Task

Task Type Task Properties Suitable Models Examples
Document layout 
analysis

Need pixel-level 
understanding

U-shaped models 
e.g., dhSegment, 
U-NeXt

Project 2

Document 
categorization

Need page-level 
recognition

Convolutional 
neural networks
e.g., ResNet, 
ResNeXt

Projects 3 and 5

Audio/video 
understanding

Sequential data 
understanding

Recurrent neural 
networks
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Idea 5: Applying Deep Learning | 
Choose Learning Scheme By Existence of Labeled data

Is There Labeled Data? Learning Scheme Examples
Yes Supervised Learning Projects 2, 3 and 5

No Unsupervised Learning Projects 1 and 4
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Q&A
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Appendix
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Mean Intersection over Union - mIoU

mIoU is a statistic used for 
gauging the similarity and 
diversity of extracted region to 
the ground truth

Back
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The dhSegment Model

[1] Oliveira, Sofia Ares, Benoit Seguin, and Frederic Kaplan. "dhSegment: A generic deep-learning approach for document segmentation." 2018 16th International Conference on Frontiers in 
Handwriting Recognition (ICFHR). IEEE, 2018.  

Back
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U-NeXt Model

[6] S. Xie, R. Girshick, P. Dollár, Z. Tu and K. He, "Aggregated Residual Transformations for Deep Neural Networks," 2017 IEEE Conf. on CVPR, 2017, pp. 5987-5995.

Back
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Efficient and Accurate Scene (EAST) Text Detector |
Project 2.2 (1st Iteration)

• HyperNet [8] + U-Net [9] 
• Detect texts in graphic images in any 

direction
◦ Why applicable?

◦ Figures/illustrations are snippets of a graphic 
region

[8] T. Kong, A. Yao, Y. Chen and F. Sun, "HyperNet: Towards Accurate Region Proposal Generation and Joint 
Object Detection," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 
2016, pp. 845-853.
[9] O. Ronneberger, P.Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” 
in Medical Image Computing and Computer-Assisted Intervention (MICCAI), ser. LNCS, vol. 9351. Springer, 
2015, pp. 234–241,

240

Liz Lorang
243



Efficient and Accurate Scene (EAST) Text Detector |
Project 2.2 (1st Iteration)

• Performance on detecting texts in 
newspaper figure/graph is good

• Text location is recorded
Detected Texts

Back
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Visual Features (Density) 
| Project 4 (2nd Iteration)

0.45 0.27

• Density
• A way of representing 

image’s compactness

Back
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0.88 0.95

• Zone Size Abnormality
• A way of representing irregularity 

of the size of zone

Visual Features (Zone Size Abnormality) 
| Project 4 (2nd Iteration)

Zone sizes
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Visual Features (Zone Size Abnormality) 
| Project 4 (2nd Iteration)

Zone size abnormalityDensity

0.51 0.17

Back
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ResNet [5]  vs. ResNeXt [6]

• The ResNeXt and ResNet models 
have the same layer architecture

• However, ResNeXt split one building 
block into multiple branches

Back
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Project 2 Figure/Graph Extraction | Various U-NeXt Approaches

• Model used  U-NeXt

• Approach 3 Configuration  
(1) using resizing layer for upscaling
(2) training and testing on the BW directly

• Approach 4 Configuration  
(1) using deconvolutional layer for upscaling 
(2) combining all five non-background classes into one class
(3) training and testing on the BW directly

• Approach 1 Configuration  
(1) using deconvolutional layer for upscaling
(2) training and testing on the BW directly

• Approach 2 Configuration  
(1) using deconvolutional layer for upscaling
(2) pre-training on the ENP dataset
(3) fine-tuning and testing on the BW

• Datasets used  481 images from external dataset European historical 
newspapers (ENP) [2]  and 1,532 images from the Beyond Words collection

2

1

1 2 3 4

4

3

Back
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